
Partial Derivative Games in Thermodynamics

Shi Feng

1 Mathematics

1.1 Chain rule review

Suppose z = z(x, y), x = x(s, t), y = y(s, t) and compute ∂z
∂s and ∂z

∂t .
From z = z(x, y) we have:

dz =
∂z

∂x
dx+

∂z

∂y
dy.

now we do the same thing to dx, dy:

dx =
∂x

∂s
ds+

∂x

∂t
dt.

dy =
∂y

∂s
ds+

∂y

∂t
dt.

plug into dz:

dz =
(∂z
∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

)
ds+

(∂z
∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

)
dt

therefore
∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
.

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
.

To be more specific about the variables, we can write:(∂z
∂s

)
t

=
(∂z
∂x

)
y

(∂x
∂s

)
t

+
(∂z
∂y

)
x

(∂y
∂s

)
t
.

(∂z
∂t

)
s

=
(∂z
∂x

)
y

(∂x
∂t

)
s

+
(∂z
∂y

)
x

(∂y
∂t

)
s
.

The subscript indicates which variable is to be held constant.

1.2 Multivariable derivatives

f, g, h are all functions of x, y, that is: f = f(x, y), g = g(x, y), h = h(x, y)

(∂f
∂g

)
h

= 1
/( ∂g

∂f

)
h

(1)
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This is obvious once rewrite functions as: f = f(g, h).

(∂f
∂g

)
x

=
∂f

∂y

/∂g
∂y

(2)

Proof:
We can rewrite f = f(x, y) = f(x, y(x, g))⇒ f(x, g), therefore:(∂f

∂g

)
x

=
(∂f
∂y

)
x

(∂y
∂g

)
x

=
∂f

∂y

/∂g
∂y
.

Note that the DOF remains 2

(∂y
∂x

)
f

= −∂f
∂x

/∂f
∂y

(3)

Proof:
If we hold f as a constant, then x, y are no longer independent since they’re

now related by f = f(x, y).

df ≡ 0 =
∂f

∂x
dx+

∂f

∂y
dy ⇒ ∂f

∂x
dx = −∂f

∂y
dy.

since x, y are related, we can write y = y(x, f), which leads to:

dy =
(∂y
∂x

)
f
dx+

(∂y
∂f

)
x
df =

(∂y
∂x

)
f
dx+ 0.

compare two equations above, we then arrive at:

∂y

∂x
= −∂f

∂x

/∂f
∂y
.

Q.E.D

*Cyclic chain rule: (∂f
∂g

)
h

(∂g
∂h

)
f

(∂h
∂f

)
g

= −1 (4)

Proof:
WLOG, we look at

(
∂h
∂f

)
g

first, where g is held constant. Since g = g(h, f),

h, f become dependent variables once g is fixed:

dg ≡ 0 =
(∂g
∂h

)
f
dh+

( ∂g
∂f

)
h
df ⇒ df = −

(∂g
∂h

)
f

(∂f
∂g

)
h
dh.

Therefore:(∂f
∂h

)
g

= −
(∂g
∂h

)
f

(∂f
∂g

)
h
⇒

(∂f
∂g

)
h

(∂g
∂h

)
f

(∂h
∂f

)
g

= −1.
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Q.E.D

(∂f
∂x

)
g

=
∂f

∂x
+
∂f

∂y

(∂y
∂x

)
g

(5)

Proof:
Similarly, apply chain rule to f = f(x, y) = f(x(x), y(x, g)), where x is itself

the parameter: (∂f
∂x

)
g

=
∂f

∂x

∂x

∂x
+
∂f

∂y

(∂y
∂x

)
g

= (5).

Q.E.D

1.3 Practice: 1st Law of Thermodynamics

First, look at two useful concepts, i.e. the heat capacity C, under different
circumstances, it can be Cv or Cp.

C = lim
T→0

Q

∆T
.

If the volume is fixed, pdV = 0, then

Q = Uf − Ui = ∆U.

therefore:

Cv = lim
∆T→0

∆U

∆T
=
(∂U
∂T

)
V
.

On the other hand, if the pressure is fixed, the work on the system is W =
−PdV , then:

Q = ∆U −W = ∆U + P∆V.

therefore:

Cp = lim
T→0

∆U + p∆V

∆T
=
(∂U
∂T

)
P

+ P
(∂V
∂T

)
P
.

or, in terms of enthalpy: H = U + PV , it becomes

Cp =
(∂H
∂T

)
P
, Q = ∆H.

Now we play with these equations. Note that in Cv, the independent variables
we chose are T, V , whereas in Cp they are P, T . If we were to study the con-
nection between Cv and Cp, we have to express them under the same set of
variables.

If there exists an equation of state F (P, V, T ) = 0 (generically there is, e.g.
PV = nRT), this can be achieved by writing U = U(T, V ) = U(T, V (T, P )).
Then the partial derivative becomes:(∂U

∂T

)
P

=
(∂U
∂T

)
V

+
(∂U
∂V

)
T

(∂V
∂T

)
P

(6)

where the last term
(
∂V
∂T

)
P

encodes information of equation of state.
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Using this, we can rewrite Cp as:

Cp =
(∂U
∂T

)
P

+ P
(∂V
∂T

)
P

=
(∂U
∂T

)
V

+
(∂U
∂V

)
T

(∂V
∂T

)
P

+ P
(∂V
∂T

)
P

=
(∂V
∂T

)
P

[(∂U
∂V

)
T

+ P
]

+ Cv

(7)

or

Cp − Cv =
(∂V
∂T

)
P

[(∂U
∂V

)
T

+ P
]
.

One can check that for ideal gas, it becomes the famous Cp − Cv = nR.

From (7) we can solve for
(
∂U
∂V

)
T

:

(∂U
∂V

)
T

= (Cp − Cv)
( ∂T
∂V

)
P
− P (8)

Why we are interested in this tedious expression? Well, if we choose T, V to
be the set of independent variables, and if Cp, Cv and the Eq of state can be
measured experimentally, this will be extremely useful in finding the differential
of U(T, V ):

dU =
(∂U
∂T

)
V
dT +

(∂U
∂V

)
T
dV (9)

plug in (8) into (9):

dU = CvdT +
[
(Cp − Cv)

( ∂T
∂V

)
P
− P

]
dV (10)

which makes it possible to derive the internal energy by a path integral:

U = U0 +

∫
∂(T,V )

{
CvdT +

[
(Cp − Cv)

( ∂T
∂V

)
P
− P

]
dV
}

(11)

where ∂(T, V ) represents the path in T − V parameter space.
But what if we want it represented in P, V , since sometimes we’d like to analyze
things in P − V diagram more than T − V . Well, we can use the equation of
state and derive the following:

dT =
(∂T
∂P

)
V
dP +

( ∂T
∂V

)
P
dV.

and plug this into (11):

dU = Cv

(∂T
∂P

)
V
dP +

[
Cp

( ∂T
∂V

)
P
− P

]
dV (12)

We can use (12) to study adiabatic process, where Q = 0 thus S = Const. this
means:

dU + PdV = 0.

therefore

Cv

(∂T
∂P

)
V
dP + Cp

( ∂T
∂V

)
P
dV = 0 (13)
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simplify by applying cyclic chain rule:(∂P
∂V

)
S

=
Cp
Cv

(∂P
∂V

)
T
≡ γ

(∂P
∂V

)
T
.

For ideal gas, this indicates the P −V lines are steeper in adiabatic process than
in isotherms, but may differ in other equations of state.
Now suppose the equation of state is given by:

PV = F (T ).

where F(T) may be some complicated function of T or ideal gas’s PV = nRT .
Therefore, after taking derivative of P, V respectively, we have:

V =
dF

dT

(∂T
∂P

)
V
, P =

dF

dT

( ∂T
∂V

)
P
.

plug this into (13) we have:

CvV dP + CpPdV = 0 ⇒ dP

P
+ γ

dV

V
= 0 (14)

Therefore, in an adiabatic process:

PV γ = C (15)
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