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1 Preliminaries

Definition 1.1. Orbits: Let G be a finite group and m ∈ M is a point in space M . We define
the orbit of m under G as the set given by

G ·m = {am | a ∈ G}

Definition 1.2. Isotropy Group (Stabilizer): The isotropic (sub)group of m in G, also termed
a stabilizer, is the set of elements in G that leave m invariant. It is written as Gm.

Given any point m ∈ M we can consider the subset Gm of G consisting of those a ∈ G which
satisfy am = m, i.e. the point m remains invariant under these operations. It is simple to see that
such a subset forms a subgroup of G because

1. Im = m, Gm has an identity element.

2. if am = m, then a−1m = m ⇒ a−1 ∈ Gm. So all elements in Gm have inverse.

3. if am = m, bm = m, then (ab)m = m. That is ∀a, b ∈ G and a 6= b, we have ab ∈ G. Hence
the closure condition is met.

We call such a subgroup Gm of G the isotropy group of m.

Definition 1.3. Transformer: Given a group G that acts on set M , the transformer of two set
elements m,n ∈M , denoted by trans(m,n) or Smn, is defined as:

trans(m,n) = Smn = {a ∈ G|am = n}

Note that Smm = Gm.

∀a ∈ G, m ∈ M , there is a bijection f between the orbit G · m and the set of left cosets
Lm = {aGm|∀a ∈ G} i.e. the bijection

f : G ·m→ Lm

given that f : am 7→ aGm.

Proof. (1) f is well-defined: Let y ∈ G ·m being a point in orbit, we need to show that different
representatives of y is mapped to the same left coset. Let the two representatives be y = a1m = a2m
with a1, a2 ∈ G, we immediately have

a−12 a1m = a−12 a2m = m ⇒ a−12 a1 ∈ Gm
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Therefore
a−12 a1Gm = Gm ⇒ a1Gm = a2Gm

so we have y = a1m = a2m⇒ a1Gm = a2Gm, hence f is well-defined.
(2) f is surjective, which is self-explanatory by the definition f : am 7→ aGm.
(3) f is injective: We already know f is well-defined and surjective, so we only need to show

that a coset is the image of the same element in orbit. If aGm = a′Gm, then ∃h ∈ Gm, a = a′h.
Then am = (a′h)m = a′m. QED

Theorem 1.1 (Orbit-Stabilizer Theorem). Let G be a finite group and m ∈M is a point in space
M . Let |G| denote the cardinality of G. Then

|G| = |G ·m||Gm|

Proof. According to Lagrangian theorem we can partition the group G by isotropy subgroup Gm

into G/Gm, which is exactly the set of left cosets of isotropy group of m. That is

G =
⋃
{Gm, a1Gm, a2Gm, . . .}, aiGm ∈ G/Gm

From Lemma.1 we know that there is a bijection from these left cosets to orbit of m under G,
therefore in the curly bracket there are total |G ·m| of these cosets. Then it’s readily to see
|G| = |G ·m||Gm| must hold.

2 Burnside’s Lemma

Lemma 2.1. ∑
a∈G
|Ma| =

∑
m∈M

|Gm|

Proof. Let Z ⊂ G×M , defined by

Z = {(b,m)|bm = m, b ∈ G,m ∈M}

Define two functions θ and τ acting on Z by:

ρ(b,m) = m, σ(b,m) = b

which gives two fibers ρ−1, σ−1 over M and G. Specifically, Z is fibered over M by ρ−1, the fiber
over a point ρ−1(m) being its isotropy group Gm; Z is also fibered over G by σ−1, the fiber over a
group element σ−1(a) being its fixed points Ma. That is

Z ∼=
⋃

m∈M
Gm × {m} =

⋃
a∈G
{a} ×Ma

This gives two ways to count |Z|. Using the fiber over G and the fiver over M respectively:

|Z| =
∑
a∈G
|Ma|, |Z| =

∑
m∈M

|Gm| ⇒
∑
a∈G
|Ma| =

∑
m∈M

|Gm|

Hence we’ve shown the relationship between the summation over fixed points and that over isotropy
group elements.
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Corollary 2.1.1. Let elements of the quotient M/G (viz. set of orbits) labeled by O1, . . . , Or, then∑
m∈M

|Gm| =
∑
Oi

|G|

A simple intuitive example: Suppose G is a symmetry group of M , that is G = Gm,∀m ∈ M ,
and each orbit has single element G ·m = {m}. Then it’s readily to see the corollary holds.

Proof. ∑
m∈M

|Gm| =
∑
Oi

∑
m∈Oi

|Gm| =
∑
Oi

|G ·m||Gm| =
∑
Oi

|G|

where in the 2nd step we have used the fact that isotropy groups of elements that belong to the
same orbit has the same cardinality, which is readily to see from Gam = aGma

−1 whereby am being
an arbitrary member of O(m).

Lemma 2.2. Burnside’s Lemma: Let M/G be the set of orbits of M , then, Burnside’s lemma
states that

|M/G| = 1

|G|
∑
a∈G
|Ma|

where Ma is the subset of M whose elements are invariant under a ∈ G, that is, Ma is the set of
fixed points FP (a).

Proof. Note that every element in a orbit G ·m contributes 1/|G ·m| to the total sum of orbits i.e.
its sum over all elements in an orbit gives

∑
m′∈G·m 1/|G ·m| = 1. Therefore

|M/G| =
∑
G·m

∑
m′∈G·m

1

|G ·m|
=

∑
m∈G

1

|G ·m|

Then the orbit-stabilizer theorem tells that 1/|G ·m| = |Gm|/|G|, hence by Lemma.2.1:

|M/G| = 1

|G|
∑
m∈G
|Gm| =

1

|G|
∑
a∈G
|Ma|
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