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1 Spins in orthogonal fields

In quantum mechanics, Ising model is the simpliest non-trivial toy model, whose local energy reads
σzi σ

z
i+1 + gσxi . However, we can readily write down an even simpler but boring Hamiltonian:

H =
∑
i

σzi + g
∑
i

σxi (1)

where the n.n. coupling is absent. Yet, like Ising model, there is competition between z-polarized
state and x-polarized state nonetheless and the two contributions to Hamiltonian do not commute
with each other. However, this apparent competition turns out to be trivial under some rotation.

This can be proved by constructing a rotation about y-axis by some angle θ, such that the
Hamiltonian becomes a single pauli matrix afterwards. The rotation about y-axis by θ is given by
the unitary operator:

R = exp(−iθSy) = exp

(
−iθ

2
σy

)
= cos

(
θ

2

)
− iσy sin

(
θ

2

)
(2)

so that for a single site, σz becomes

R†σzR =

[
cos

(
θ

2

)
+ iσy sin

(
θ

2

)]
σz
[
cos

(
θ

2

)
− iσy sin

(
θ

2

)]
= σz cos θ − σx sin θ

(3)

and the second term in Eq.1 becomes:

R†(gσx)R = g

[
cos

(
θ

2

)
+ iσy sin

(
θ

2

)]
σx
[
cos

(
θ

2

)
− iσy sin

(
θ

2

)]
= σxg cos θ + σzg sin θ

(4)

so that the onsite Hamiltonian density is

hi = (cos θ + g sin θ)σz + (g cos θ − sin θ)σx (5)

with H =
∑

i hi. Now let us define θ:
θ = tan−1 g (6)

such that the second term in Eq.5 becomes

g cos θ − sin θ = cos θ(g − tan θ) = cos(g − g) = 0 (7)
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and the first term in Eq.5:

cos θ + g sin θ = cos θ(1 + g tan θ) = cos θ(1 + g2) =
√

1 + g2 (8)

where we used cos θ = 1/
√

1 + g2. Therefore, by a global rotation
∏
iRi the Hamiltonian is

essentially a trivial one:

H =
√

1 + g2
∑
i

σzi (9)

Therefore we won’t see any phase transition or singularity as we tune g even if σx and σz doesn’t
commute: the continuous symmetry is always present and will never break into discrete ones.

2 Hopping Fermions

The most boring Fermionic Hamiltonian one can write down is

H = tc†1c2 + tc†2c1 (10)

For convenience we write it in the matrix form:

H = (c1 c2)

(
0 t
t 0

)(
c†1
c†2

)
(11)

In order to rotate tσx to a diagonal matrix, i.e. into σz, we again apply a rotation about y axis by
R = exp

(
−i θ2σy

)
.

R†σxR = σx cos θ + σz sin θ (12)

setting θ = π
2 gives R =

√
2
2 − iσ

y
√
2
2 and R†σxR = σz. So the resulting Hamiltonian is

H = tψ̂σzψ̂† = tψ̂†1ψ̂1 − tψ̂†2ψ̂2 (13)

where the normal mode is given by

ψ̂† =

(
ψ̂†1
ψ̂†2

)
= R†

(
c†1
c†2

)
=

√
2

2

(
1 1
−1 1

)(
c†1
c†2

)
=

√
2

2

(
c†1 + c†2
c†2 − c

†
1

)
(14)

so the eigen states of the Hamiltonian besides |0〉 are

|ψ1〉 =

√
2

2
(c†1 + c†2) |0〉 , |ψ2〉 = −

√
2

2
(c†1 − c

†
2) |0〉 (15)

At half filling, |ψ1〉 is the excited state with energy t and |ψ2〉 = |ψg〉 is the ground state with
energy −t. By the same token we can write down eigen states for spinful hopping particles whose
Hamiltonian is

H = t
∑
σ

c†1,σc2,σ + c†2,σc1,σ (16)

where σ = ± denotes ↑ and ↓. At one-particle filling (which is not half-filling for spinful parti-
cle! half-filling for spinful two-site system has two particles!), the ground state energy is two-fold
degenerate:

|ψg,±〉 = −
√

2

2
(c†1,± − c

†
2,±) |0〉 , Eg,± = −t (17)
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whose magnetization per site is

〈ψg,±|Szi |ψg,±〉 = ±1

4
(18)

Therefore for different cat states

|ψg(α)〉 = α |ψg,+〉+
√

1− α2 |ψg,−〉 (19)

the magnetization can be different. Numeraically, to break this cat-state symmetry one has to add
a small pinning potential.

At half-filling (two-particle filling), the Hamiltonian in the diagonal basis reads

H = tψ̂†1,↑ψ̂1,↑ − tψ̂†2,↑ψ̂2,↑ + tψ̂†1,↓ψ̂1,↓ − tψ̂†2,↓ψ̂2,↓ (20)

The ground state then has to fill ψ2,↑ and ψ2,↓, both with energy −t, hence

|ψg〉 = ψ̂†2,↑ψ̂
†
2,↓ |0〉 (21)

By Eq.15 dressed with spin, we have

|ψg〉 =
1

2
(c†1,↑c

†
1,↓ + c†2,↑c

†
2,↓ − c

†
1,↑c
†
2,↓ − c

†
2,↑c
†
1,↓) |0〉 (22)
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