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1 Planck Distribution Function

Let the energy of s-th photon mode denoted by εs = s~ω. The probability that the system is in
the state of s of energy εs is given by the Boltzmann factor:

P (s) = exp(−s~ω/kBT ) (1.1)

then the thermal average value of s is

〈s〉 =
∞∑
s=0

sP (s) =
1

Z

∞∑
s=0

s exp(−s~ω/kBT ) (1.2)

with y ≡ ~ω/kBT , the summation can be written as

∞∑
s=0

s exp(−sy) = − d

dy

∞∑
s=0

exp(−sy)

= − d

dy

(
1

1− exp(−y)

)
=

exp(−y)

[1− exp(−y)]2
=

exp(−~ω/kBT )

[1− exp(−~ω/kBT )]2

(1.3)

and the partition function can be evaluated as

Z =
1

1− exp(−~ω/kBT )
(1.4)

so we have

〈s〉 =
exp(−~ω/kBT )

1− exp(−~ω/kBT )
(1.5)

or equivalently

〈s〉 =
1

exp(~ω/kBT )− 1
(1.6)

This is called the Plank distribution function which essentially converges to the Bose-Einstein
distribution. Note that 〈s〉 is dependent of frequency ω. Here 〈s(ω)〉 means the thermal average of
the number of photons in the mode of frequency ω.

2 Plank Law and Stefan-Boltzmann Law

According to previous section, the thermal average energy of mode s is

〈εs〉 = 〈s〉 ~ω =
~ω

exp(~ω/kBT )− 1
(2.1)
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The high temperature limit kBT � ~ω is dubbed classical limit, where exp(~ω/kBT ) may be
approximated as

exp(~ω/kBT ) ≈ 1 + ~ω/kBT + · · · (2.2)

thus in the classical limit the thermal average energy of the mode is

〈εs〉 ≈ kBT (2.3)

which is only a temperature of T and no longer depends on ω. This is consistent with the equal
partition theorem of dof = 1.

Generically, we need to sum over all modes with their respective energy εn such that the total
energy is to be given by U =

∑
n 〈εn〉. To do this, we first need to define all available modes and

the allowed frequencies ωn (Ref. K&K, P93 [111 of 495]). The result from electrodynamics gives
us

ωb = nπc/L (2.4)

then the total energy is

U =
∑
n

〈εn〉 =
∑
n

~ωn

exp(~ωn/kBT )− 1
(2.5)

where n ≡
√
n2x + n2y + n2z with ni integers. We replace the sum over nx, ny, nz by dnxdnydnz in

space. The summation is then written in integral as∑
n

f(n) ≈
∫∫∫ ∞

0
f(n)dnxdnydnz =

1

8

∫ ∞

0
4πn2f(n)dn (2.6)

where 1/8 is due to ni ≥ 0 thus only the positive octant of the space is involved, and the last step
we assumed the isotropy of photon energy density. We now multiply the sum or integral by a factor
of2 because there are two independent polarizations of the electromagnetic field (two independent
sets of cavity modes). Thus, using ωn = πcn/L we have

U = π

∫ ∞

0
dn n2

~ωn

exp(~ωn/kBT )− 1

=
π2~c
L

∫ ∞

0
dn n3

1

exp(~ncπ/LkBT )− 1

(2.7)

to evaluate this, we set x ≡ π~cn/LkBT , thus n = (LkBT/π~c)x and dn = (LkBT/π~c)dx, then
the integral becomes

U =
π2~c
L

(
kBTL

π~c

)4 ∫ ∞

0
dx

x3

exp(x)− 1
(2.8)

the definite integral evaluates to π4/15. Then, the energy per unit volume is found to be

u ≡ U

V
=

π2k4B
15~3c3

T 4 (2.9)

with V = L3. The result that the radiant energy density is proportional to the fourth power of the
temperature is known as the Stefan-Boltzmann law of radiation.

In applications we also would like to know the energy density spectrum resolved in frequency
ω. To do this we simply invert the relation between ωn and n into

n = ωnL/πc ⇒ dn =
L

πc
dω (2.10)
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then the integral for U becomes

U = π~
(
L

πc

)3 ∫ ∞

0
dω

ω3

exp(~ω/kBT )− 1
(2.11)

so the energy per volume is

U

V
=

~
π2c3

∫ ∞

0
dω

ω3

exp(~ω/kBT )− 1
(2.12)

hence the spectral density is

u(ω) =
~

π2c3
ω3

exp(~ω/kBT )− 1
(2.13)

3 Black body

The measurement of high temperatures depends on the flux of radiant energy from a small hole
in the wall of a cavity maintained at the temperature of interest. Such a hole is said to radiate as
a black body, which means that the radiation emission is characteristic of a thermal equilibrium
distribution.

Define the energy flux JU as the rate of energy per unit area, that is, the the amount of energy
that passes through a unit area per unit time. Then we can straightforwardly write:

JU = c
U(T )

V
× (geometrical factor) (3.1)
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