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Introduction

The Toric code Hamiltonian:

HTC = �J1

X

c

As � J2

X

p

Bp

where As =
Q

s �
x
i , Bp =

Q
p �

z
i



Ground state construnction

Hamiltonian is made of purely commuting terms

[As ,As0 ] = 0

[Bp,Bp0 ] = 0

[As ,Bp] = 0

so that both plaquette and star operators commute with

Hamiltonian:

[As ,H] = [Bp,H] = 0

As and Bp can be simultaneously diagonalized. Assuming J > 0,

the ground state is when all Bp = 1 and As = 1



The pictorial solution

Work in �z basis. The classical configuration: sl = ±1.

The ground state is some superposition of vortex-free

configurations. We must have:

Bp | 0i = | 0i ) | 0i =
X

v .f .

cs |si

As is a good quantum number, which evaluates to +1 at g.s.

As | 0i = | 0i

This condition holds true if and only if all the cs are equal for each

orbit of the As



Gauge point of view

View As as a gauge transformation operator. Physical states must

satisfy:

As | 0i = | 0i

Start with the trivial | 0i =
N

l |sl = 1i, which is not gauge

invarient since apparently As will flip spins on 4 links thus

As | 0i 6= | 
0
i. Such a local gauge transformation can be fixed by

redefining our wavefunction:

| i = | 0i+ As | 0i

such that

As | i = As | 0i+ A
2

s | 0i = As | 0i+ | 0i



Therefore the ground state is:

| i /
Y

s

(1 + As) | 0i

Essentially, we’re superposing all gauge-equivalent wavefunction

into one gauge-equivalent class.



Contractable loops

The prodect of �z eigenvalues of the links of any closed loop in

the Gound state is always 1:
Q
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where we have used �z
7
�z
7
= 1



Degeneracy - non-contractable loops on T2

Define Wilson-loop operator:

WC(s) =
Y

l2C
sl , C = C1 or C2

This forms ”superselection” sectors, i.e. WC is una↵ected by As .

WC1,2 = ±1 ) 4-fold degenerate ground state.



TC limit - Numerical results

TC limit



Entanglement Entropy

Scaling of entanglement in 2D Gapped system:

SA ⇠ ↵L

– the ”Area law”. L being perimeter of closed loop



Entanglement entropy: topologically ordered states
Additional term �: Topological entanglement entropy

SA ⇠ ↵L� �

� 6= 0 indicates long-range entanglement structure that originates

from the topological nature of the system.



�TC=log 2

The entanglement entropy in a rectangular region

Figure 1: Degrees of freedoms live on links, the boundary of the

rectangular area is labeled by hi .



The ground state is {h}� dependent:

�� {hi}
↵
= |h1, h2, . . . , hni ⌦

�� {hi}, in
↵
⌦
�� {hi}, out

↵
.

(This is a product state of 3 sectors in the Schmidht basis)

Then the full ground state is:

| i /
X

{hi}

�� {hi}
↵
=

X

{hi}

|h1, . . . , hni ⌦
�� {hi}, in

↵
⌦
�� {hi}, out

↵
.



We apply this result to the rectangular partition of lattice:

Y

r2{C.L.}

�zr |h1, . . . , hni = 1 or h1 ⇥ h2 ⇥ . . .⇥ hn = 1.

Therefore, the boundary sector |h1, . . . , hni has 2n�1
independent

configurations.

The normalized ground state is then:

| i = 1

2(n�1)/2

X

{hi}

|h1, . . . hni
�� {hi}, in

↵ �� {hi}, out
↵
.



The density matrix is then:

⇢ = | i h | =
X

{hi}

X

{h0i }

�� {hi}
↵
h {h0i }|

=
1

2n�1

X

{hi}

X

{h0i }

⇣
|h1 . . . hni | {hi}, ini | {hi}, outi

⌘⇣
h.c .0

⌘

Trace out out sector:

⇢in =
1

2n�1
|h1 . . . hni | {hi}, ini hh1 . . . hn| h {hi}, in|

which is exactly I2n�1⇥2n�1



⇢in =
1

2n�1
|h1 . . . hni | {hi}, ini hh1 . . . hn| h {hi}, in| ⌘ I2n�1⇥2n�1 .

Therefore the entanglement entropy is:

SEE = �tr [⇢in log ⇢in] = (n � 1) log 2 = n log 2� log 2

where the first term n log 2 The same result can be dereived from

PK construction:

Stopo = SA + SB + SC � SAB � SBC � SAC + SABC = � log 2.



Vac.
The Hamiltonian is:

HTC = �J1

X

c

As � J2

X

p

Bp

where As =
Q

s �
x
i , Bp =

Q
p �

z
i . Ground state is vortex-free:

Figure 2: Illustration of G.S. by classical configuration



Charge Excitation
Define electric-path operator:

W
(e)
C (s1, s2) =

Y

l2C
⌧ zl

Figure 3:
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[W
(e)
C ,Bp] = 0, [W

(e)
C ,As ] =?

W
(e)
C commutes with most but not all star operators.

At the end points of electric path C, which we label As1 and As2 :

{W (e)
C ,As1/2} = 0.

Let it act on the ground state wavefunction, by gauge invariance:

W
(e)
C (s1, s2) | 0i = �As1/2W

(e)
C (s1, s2) | 0i

This flip the sign of local energy of As . So

| s1,s2i ⌘ W
(e)
C (s1, s2) | 0i is an eigenstate with energy 4Je .

weget
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Magnetic Vortices

Define an magnetic path operator W
(m)

C (p1, p2):

W
(m)

C (p1, p2) =
Y

l2C
⌧ xl

where p1 and p2 are labels of plaquettes, and path C is path on

dual lattice (centers of the meshgrid). l 2 C if they cut cross.



[W
(m)

C ,As ] = 0, [W
(m)

C ,Bp] =?

All but two plaquette operators Bp1 and Bp2 at the ends of path C
commute with W

(m)

C .

{W (m)

C (p1, p2),Bp1/2} = 0.

Similary to the charge excitation:

Bp1 | p1,p2i = � | p1,p2i

‘magnetic fluxes’ (m-particles) at the plaquettes p1 and p2 , each

costs 2Jm to create.



Mutual Statistics
Take a charge e around a vortex m. Let |⇠i be a state contatining

a magnetic vortex at p1. Let C be a closed loop around p1, then

the braiding operation is defined as:

 
Y

l2C
⌧ zl

!
|⇠i =

0

@
Y

p2AC

Bp

1

A |⇠i

R.H.S is the lattice-version of Stokes’ theorem

(d)
m m

e e



We have shown that m�particle flips sign of Bp1 , so that:

Bp1 |⇠i = � |⇠i )

0

@
Y

p2AC

Bp

1

A |⇠i = � |⇠i

upon braiding e around m, wavefunction changes by |⇠i ! � |⇠i,
i.e. we pick up a phase of ⇡. This gives the fusion rule:

*exchange twice is topologically equivalent to braiding around.



Fusion Rule

e ⇥ e = 1, m ⇥m = 1, e ⇥m = f

X X


