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Introduction

The Toric code Hamiltonian:
Hre=-hY As—h> B,
c p

— X —_ z
where As = [[; 07, Bp =11, 07
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Ground state construnction

Hamiltonian is made of purely commuting terms

[As, As] =0
[Bp, Byr] =0
[As, Bp: =0

so that both plaquette and star operators commute with

Hamiltonian:
[As, H] = [Bp, H] = 0

As and B, can be simultaneously diagonalized. Assuming J > 0,
the ground state is when all B, =1 and As =1



The pictorial solution

Work in o, basis. The classical configuration: s; = +1.
The ground state is some superposition of vortex-free
configurations. We must have:

By o) = o) = [¢o) = csls)

As is a good quantum number, which evaluates to +1 at g.s.

As |¢0> — W0>

This condition holds true if and only if all the cs are equal for each
orbit of the As



Gauge point of view

View Ag as a gauge transformation operator. Physical states must
satisfy:
As |Wo) = Vo)

Start with the trivial |Wp) = ), |s; = 1), which is not gauge
invarient since apparently As will flip spins on 4 links thus

As |Wo) # |V,). Such a local gauge transformation can be fixed by
redefining our wavefunction:

(V) = |Vo) + As [Vo)
such that

As |W) = A [Wo) + AZ [Wo) = A [Wo) + |Wo)



Therefore the ground state is:
W) o [ ]2+ As) [Wo)

Essentially, we're superposing all gauge-equivalent wavefunction
into one gauge-equivalent class.



Contractable loops

The prodect of % eigenvalues of the links of any closed loop in

the Gound state is always 1: [ ], crjosed toop1 07 =1

zZz zZ zZ_ Z zZ Z _ (. Z_ Z_ _Z _ _Z ZzZ Z Z _Z
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where we have used 0707 =1



Degeneracy - non-contractable loops on T?

Define Wilson-loop operator:

We(s) = Hsl, C=C or C,
leC

This forms "superselection” sectors, i.e. W, is unaffected by As.

We,, =1 = 4-fold degenerate ground state.



TC limit - Numerical results
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Entanglement Entropy

Scaling of entanglement in 2D Gapped system:

— the "Area law”. L being perimeter of closed loop
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Entanglement entropy: topologically ordered states
Additional term ~: Topological entanglement entropy

Sa~al—~

~ # 0 indicates long-range entanglement structure that originates
from the topological nature of the system.
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Vrc=log?2

The entanglement entropy in a rectangular region

Figure 1: Degrees of freedoms live on links, the boundary of the
rectangular area is labeled by h;.



The ground state is {h} — dependent:

[Whiny) = 1, b2, hn) @ |Ygpy,in) @ |py, out) .

(This is a product state of 3 sectors in the Schmidht basis)

Then the full ground state is:

1) o Z |¢{h,~}> = Z |hi, ..., hn) ® W{h;}a in> & W{h;}? out> .
{hi} {hi}



We apply this result to the rectangular partition of lattice:

I] oflm,....ha)=1 or hyxhyx...xhy=1.
re{C.L.}

Therefore, the boundary sector |hy, ..., h,) has 2"~1 independent
configurations.

The normalized ground state is then:

1 |
V) = Stya D 1hn - ha) [Ygmyin) [$my out)
{hi}



The density matrix is then:

p=10) (W=D |y (Yl

{hi} {h;}

~ on—1 ZZ(’hl n) |Vgnsin) W{h},ouﬂ) (h.c.’)

{hi} {hi}

Trace out out sector:

1 . :
Pin — F ‘hl o hn> ’¢{hi}, m) <h1 c oo hn‘ <¢{hi}7 In‘

which is exactly Ton—1, 501



1
2n—1

Pin — ‘hl ce hn> ‘w{h,-}a in> <h1 ce hn’ <¢{hi}’ in[ = I[zn—lxzn—l.

Therefore the entanglement entropy is:

See = —trlpinlog pin] = (n— 1) log2 =|nlog2 — log 2

where the first term nlog?2 The same result can be dereived from

PK construction:

Stopo = Sa+ S + Sc — Sag — Sec — Sac + Sapc = —log 2.



Vac.

The Hamiltonian is:
Hre=-h)Y As—h> B,
c p

where A. = oX, B, = oZ. Ground state is vortex-free:
S s % I
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Figure 2: lllustration of G.S. by classical configuration
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Charge Excitation

Define electric-path operator:

W( ) 51,52 HT/
1eC

C
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Figure 3:



Wi B =0, [W A =7

W'®) commutes with most but not all star operators.
C P
At the end points of electric path C, which we label A, and As,:

W, A, =0. ¢ 6"f=0
Let it act on the ground state wavefunction, by gauge invariance:

WL (s1, %) [Wo) = —As, , W (51, 5) [Wo)

51/2

This flip the sign of local energy of As. So

Vs, s) = Wée)(sl,sz) |Wo) | is an eigenstate with energy 4Je.




Magnetic Vortices
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Define an magnetic path operator W(ém)(pl, p2):
W )(p1, p2) HT/
1eC

where p; and po are labels of plaquettes, and path C is path on
dual lattice (centers of the meshgrid).|| € C if they cut cross.




W™ Al =0, W™ B, =?

All but two plaquette operators B, and B,, at the ends of path C
commute with W((:m).

{W(((:m)(pla p2)7 Bpl/z} — O

Similary to the charge excitation:

BPl ’wP17P2> - = ‘wpl,P2>

‘magnetic fluxes' (m-particles) at the plaquettes p; and ps , each
costs 2J,, to create.



Mutual Statistics

Take a charge e around a vortex m. Let |£) be a state contatining
a magnetic vortex at p;. Let C be a closed loop around p;p, then
the braiding operation is defined as:

(HTf) &=\ 11I 8| 1&

1eC pEAC

R.H.S is the lattice-version of Stokes' theorem

|
m | 7h
10 : :

oS




We have shown that m—particle flips sign of Bp,, so that:

Bp [§) = =18 = B | 16) =—18)

pEAC

upon braiding e around m, wavefunction changes by |£) — —|&),
I.e. we pick up a phase of . This gives the fusion rule:

LRSI
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e m

*exchange twice is topologically equivalent to braiding around.






