
Exact Solution of Quantum Spin Liquids in Kitaev’s Honeycomb Model

Shi Feng

Department of Physics, The Ohio State University

Feng, Shi (Dept. Phys.) Kitaev Honeycomb June 2, 2022 1 / 43



Table of Contents

1 Introduction

2 Spin-Majorana Transformation

3 Diagonalization

Feng, Shi (Dept. Phys.) Kitaev Honeycomb June 2, 2022 2 / 43



Introduction

Phases of matter

paramegnetic

ferromegnetic
Feng, Shi (Dept. Phys.) Kitaev Honeycomb June 2, 2022 3 / 43



Introduction

Landau’s symmetry breaking theory

Ordered states spontaneously break the symmetry
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Introduction

Beyond the Landau paradigm: Quantum Spin Liquids

The Negative definition:
Absence of magnetic order of a system with interacting spins even at T → 0.

Geometrical Frustration

antiferromagnet e.g. H =
∑

SiSj Geometrically frustrated magnet
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Introduction

Honeycomb model

We follow the description in (Kitaev, 2006; Pachos, 2007)

Spin 1
2 on each site, coupled to nearest

neighbor by anisotropic spin-spin interaction.

Two sublattices

Three types of links

H = −Kx

∑
〈jk〉x

σxj σ
x
k−Ky

∑
〈jk〉y

σyj σ
y
k−Kz

∑
〈jk〉z

σzj σ
z
k

H = −
∑
α

∑
〈jk〉α

Kασ
α
j σ

α
k
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Introduction

H = −
∑
α

∑
〈jk〉α

Kασ
α
j σ

α
k

It has exact QSL solution

1 2 types of Majorana fermions excitations:

Vortex (Z2 flux) Wp

itinerant Majorana fermion c

2 Hamiltonian is diagonal in Majorana c

3 Low energy Majorana bands (vortex)
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Introduction

What do I mean by Exact Solution?

Example 1 : 1D harmonic oscillator:

Hho =
p̂2

2m
+

1

2
mω2x̂2.

1 Analytic method: Solve the PDE, find
wavefunction ψn(x) and eigen value En{

ψn(x) ∝ e−x
2
Hn(x)

En = ~ω(n + 1
2)

2 Algebric method: Define dimensionless
operator (boson or fermion):

a =
1√
2

(q̂ + i p̂), â† =
1√
2

(q̂ − i p̂)

H = ~ω(â†â +
1

2
) = ~ω(n̂ +

1

2
)
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Introduction

A many-body Example: Phonons.

Hph =
∑
j

p̂2j
2m

+
mω2

2
(x̂j − x̂j+1)2

↓

Hph =
∑
k

~ω(k)︸ ︷︷ ︸
Energy Band

( N̂k︸︷︷︸
#k-phonons

+
1

2
).
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Introduction

Recap

Harmonic Oscillator

Hho = p̂2 + ω2x̂2

↓

Hho = ~ω(n̂ +
1

2
).

Localized boson, no band.

Lattice Vibration

Hph =
∑
j

p̂2j + ω2(x̂j − x̂j+1)2

↓

Hph =
∑
k

~ω(k)(N̂k +
1

2
).

Phonon modes with band

Kitaev Model

H = −
∑
α

∑
〈jk〉α

Kασ
α
j σ

α
k

??? ↓ ???
H =

∑
k

~ω(k)(N̂k + const)

1 What is the elementary
excitation counted by N̂k

2 What is the band
structure ω(k)
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Introduction

Overview of fractionalization

H = −
∑
α

∑
〈jk〉α

Kασ
α
j σ

α
k

??? ↓ ???
H =

∑
k

~ω(k)(N̂k + const)

1 What is the elementary
excitation counted by N̂k

2 What is the band
structure ω(k)

H = −
∑
α

∑
〈jk〉α

f (fractions of σ)

X ↓ X
H =

∑
k

~ω(k)N̂k

1 fractions are Majoranas

2 N̂k counts # Majorana
modes

3 ω(k) gives Majorana bands
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Introduction

... and how to cut

More degrees of freedom to manipulate
(cut 1 into 4)

It must preserve the number of
distinguishable states
(map Qubit to Qubit)

It must preserve the SU(2) algebra of spins
[σα, σβ] = 2iεαβγσ

γ

Feng, Shi (Dept. Phys.) Kitaev Honeycomb June 2, 2022 12 / 43



Spin-Majorana Transformation

Spin-1/2 into Fermionic modes (Cut into halves)

To cut into quarters, first cut into halves:

1 Fermion has 2 states:

Occupied |1〉
Unoccupied |0〉

Define:
|↑〉 ≡ |00〉 , |↓〉 ≡ |11〉
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1 Fermion has 2 states:
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Unoccupied |0〉

Define:
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Redundant
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Spin-Majorana Transformation

Represent a spin-1/2 particle Ŝ into two
fermionic modes a1, a2.

a†1 |0〉1 = |1〉1 , a1 |0〉2 = 0

a†2 |0〉2 = |1〉2 , a2 |0〉2 = 0.

Spin-up (down) have both fermionic modes
occupied (empty):

|↑〉 = |00〉 , |↓〉 = |11〉 .

which satisfies

|11〉 = a†1a
†
2 |00〉 , a1(2) |00〉 = 0.

Redundancy!

Hilbert space size of Ŝ = 2

. . . of fermionic modes = 22 = 4

⇒ We have to project out two dofs: |10〉 , |01〉
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Spin-Majorana Transformation

Let a1,i , a2,i be the 1st and 2nd fermionic mode operator of the spin at site i . The projection
can be achieved by a local constraint (gauge) operator Di :

Di = (1− 2a†1,ia1,i )(1− 2a†2,ia2,i ) = (1− 2n1,i )(1− 2n2,i ).

where n1,i , n2,i are occupation number operators of the two fermion dofs at site i . Check:

Di |11〉 = (1− 2)(1− 2) = 1, Di |00〉 = (1− 0)(1− 0) = 1.

Di |10〉 = (1− 2)(1− 0) = −1, Di |01〉 = (1− 0)(1− 2) = −1.

Therefore the physical space is recovered by

Di |Ψ〉 = |Ψ〉 .

while Di |Ψ〉 = − |Ψ〉 is the redundant dofs in the extended Hilbert space. (to be Gauged out)
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Spin-Majorana Transformation

Redundancy

# spin states σ̂ = 2

# fermionic modes = 22 = 4

⇒ We have to project out two dofs: |10〉 , |01〉 The constraint (gauge) operator D is defined:

D |00〉 = + |00〉 , D |11〉 = + |11〉

D |10〉 = − |10〉 , D |01〉 = − |01〉

This can be achieved by

D = (1− 2n1)(1− 2n2).

ni : occupation number (0 or 1) of i fermions.
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Spin-Majorana Transformation

Projection of many-body state:

|ψ〉 =
∏
j

(
1 + Di

2

) ∣∣∣ψ̃〉 .
ψ̃ in extended Hilbert space L̃
ψ in the physical subspace L

Feng, Shi (Dept. Phys.) Kitaev Honeycomb June 2, 2022 18 / 43



Spin-Majorana Transformation

Fermionic modes to Majorana modes (halves to quarters)

However, this fermionic representation is still not enough to tackle the Hamiltonian. We need
”Sharper resolution” – Majorana modes

What is Majorana?
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Spin-Majorana Transformation

Majorana: no anti-particle

Majorana’s anti-particle is itself

creation operator γ†

&

annilihation operator γ

are the same

γ = γ†
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Spin-Majorana Transformation

Simplest way to make γ† = γ: Taking ”real” and ”imaginary” parts:

Majorana

c = a1 + a†1, bx = i(a†1 − a1), by = a2 + a†2, bz = i(a†2 − a2)
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Spin-Majorana Transformation

ci = a1,i + a†1,i , bxi = i(a†1,i − a1,i ), byi = a2,i + a†2,i , bzi = i(a†2,i − a2,i )

Gauge operator from fermion basis into Majorana basis:

D = (1− 2n1)(1− 2n2) = bxi b
y
i b

z
i ci
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Spin-Majorana Transformation

What we have done:

XMore degrees of freedom

XPreserve the number of distinguishable
states

× Preserve the SU(2) algebra of spins

σ̃αj = ibαj cj for α = x , y , z

Feng, Shi (Dept. Phys.) Kitaev Honeycomb June 2, 2022 23 / 43
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Spin-Majorana Transformation

Recap

We have mapped a single spin-1/2 particle into 2 fermionic modes, then to 4 Majorana
modes:

We have found the gauge operator Di = bxi b
y
i b

z
i ci which projects the extended Hilbert

space L̃ into the physical subspace L.

It is a faithful representation because (i) we can use Di to recover the correct Hilbert
space, and (ii) when restrict to L Majoranas satisfy spin-1/2’s SU(2) algebra.
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Diagonalization

A Rudimentary Scheme for Wavefunction

Rewrite the Hamiltonian in spin basis into the Majorana basis in L̃:

Find a wavefunction of Hamiltonian in L̃
Obtain the physical subspace by projection

|Ψ〉 =
∏
j

(
1 + Di

2

) ∣∣∣Ψ̃〉 ∈ L.
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Diagonalization

. . . for Dispersion of Excitations

Rewrite the Hamiltonian in spin basis into the Majorana basis in L̃:

Simplify into some quadratic Hamiltonian of hopping Majoranas

Diagonalize using Fourier tranformation to get something like

H(k) ∼
∑
k

ω(k)c†kck =
∑
k

ω(k)nk .

the dispersion of c†k modes are given by ω(k). (Wavefunction solution is dispensable)

Feng, Shi (Dept. Phys.) Kitaev Honeycomb June 2, 2022 26 / 43



Diagonalization

Why Majoranas? – Conserved Quantities

An observable Ô is conserved if [Ô,H] = 0, each eigen value of Ô labels a subspace.

For an arbitrary Hamiltonian Ĥ = f (Ô, Â, B̂, . . .)
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Diagonalization

Extensive # conserved quantities in Majorana representation

Link Operators (vector potential) and Plaquette operators (flux)

[ûij ,H] = 0

[W̃p,H] = 0

↓

Extensive # of conserved quantites
{Wp} and {uij}
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Diagonalization

Link Operators

The Hamiltonian in L̃ using Majorana fermions:

H̃ = −
∑
〈ij〉α

Kασ̃
α
i σ̃

α
j = i

∑
〈ij〉α

[
Kα(ibαi b

α
j )
]
cicj ≡ i

∑
〈ij〉α

Kαûijcicj .

link operator: ûij = ibαi b
α
j

ûij is conserved: [ûjk , H] = 0.

û2jk = 1, hence its eigen values are ±1.
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Diagonalization

L̃ =
⊕
{ujk} L̃{ujk=±1}
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Diagonalization

With ujk being static numbers, the Hamiltonian becomes quadratic of ci Majoranas:

H =
∑
〈ij〉α

(iKαûij)cicj ⇒ H =
∑
〈ij〉α

(iKαuij)cicj

Two things are Missing:

Project the extended L̃ into L

What to assign to {ujk} for ground state?
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Diagonalization

Plaquette Operators: W̃p = σ̃x1 σ̃
y
2 σ̃

z
3 σ̃

x
4 σ̃

y
5 σ̃

z
6

W̃p is conserved: [W̃p,H] = 0

W̃p and ûjk are simultaneouly diagonalizable: [W̃p, ûjk ] = 0

Represent spins by Majoranas σ̃α = ibαc , and restrict to L by enforcing Di = 1:

Ŵp = (ibx1c1)(iby2c2)(ibz3c3)(ibx4c4)(iby5c5)(ibz6c6)

= (ibz2b
z
1)(ibx2b

x
3)(iby4b

y
3 )(ibz4b

z
5)(ibx6b

z
5)(ibz6b

z
1)

= û21û23û43û45û65û61

that is, when restricted to L, W̃p becomes:

Ŵp =
∏
〈jk〉∈∂p

ûjk

Feng, Shi (Dept. Phys.) Kitaev Honeycomb June 2, 2022 32 / 43



Diagonalization

W̃p is conserved: [W̃p,H] = 0

W̃p and ûjk are simultaneouly diagonalizable: [W̃p, ûjk ] = 0

Ŵp =
∏
〈jk〉∈∂p

ûjk ⇒ Wp =
∏
〈jk〉∈∂p

ujk if restricted in L

ujk = ±1 ⇒ Wp = ±1. So the physical L can be decomposed into sectors of {Wp}:

Wp = −1 is a vortex (flux)

Physical wavefunction is determined by
vortex configuration {wp}.

A fixed vortex configuration can have
many different {ujk} configurations.
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Diagonalization

Take-Aways

In L, there are two types of conserved quantities (integrals of motion):

Plaquette Ŵp =
∑
〈jk〉∈∂p

ûjk , and Link ûjk = ibαj b
α
k .

Both eigen values of Wp and ujk are ±1.

Wavefunction in L̃ is given by link configuration {ujk}.
Physical wavefunction is determined by fixing up the vortices {Wp =

∏
∂p
ujk}.

Vortex is also (localized) Majorana:

N spins ↑↓ ⇐⇒ N/2 plaquettes ± 1.

Hilbert space size =
2N

2N/2
= 2N/2 ⇒ dim(Wp) =

√
2.
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Diagonalization

Diagonalize the Ground State Hamiltonian

Recall that we wanted to diagonalize H represented by sectors of {ujk} in L̃:

H =
∑
α

∑
〈jk〉α

(iKαujk)cicj .

Now the redundant dofs can be projected out by simply fixing a {wp} sector.

Theorem

Lieb (1994): Ground state has no vortices ⇐⇒ {wp = +1}.

Therefore we can choose the simplist configuration {ujk = +1}:

{ujk = +1} ⇒ H =
∑
α

∑
〈jk〉α

iKαcjck
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Diagonalization

H =
∑
α

∑
〈jk〉α

Kαcjck ⇒ Quadratic Hamiltonian of itinerant Majoranas

Go to momentum space by Fourier transformation:

cj =
1√
N/2

∑
~k

e i
~k·~rja~k , ck =

1√
N/2

∑
~k

e i
~k·~rkb~k .

1st Brillouin Zone
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Diagonalization

The Hamiltonian is then block-diagonal:

H =
∑
~k

Ψ†~k
ĥ~kΨ~k

, with Ψ~k
=

(
a~k
b~k

)
and ĥ~k =

1

2

(
0 if (~k)

−if ∗(~k) 0

)

where f (~k) = i(Kz + Kye
−i~k·~a2 + Kxe

−i~k·~a1)

Bands are given by

ε(~k) = ±1

2

∣∣∣f (~k)
∣∣∣
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Diagonalization

Single particle spectrum

Majorana Bands:

ε(~k) = ±1

2

∣∣∣f (~k)
∣∣∣

For Kα = C it’s identical to TB Graphene: For generic coupling Kα:

Figure:
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Diagonalization

Dynamical structure factor S(k , ω)

Graphene Kitaev
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Diagonalization

Summary

The Honeycomb model has exact solution.

H = −Kx

∑
〈jk〉x

σxj σ
x
k − Ky

∑
〈jk〉y

σyj σ
y
k − Kz

∑
〈jk〉z

σzj σ
z
k

It is solved by fractionalizing 1 spin-1/2 to 4 Majoranas with a gauge operator Di . This
representation has extensive number of conserved quantities.

There are two kinds of elementary Majorana excitations:

Localized Wp and itinerant cj

The ground state equivalent to a quadratic Hamiltonain with itinerant Majorana cjck .

Gapped phase and Gapless phase.
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Diagonalization

Backup Slides
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Diagonalization

Experimental probe

Two temperature scales:

Tc at which magnetic order begins to develop

Phenomenological Curie–Weiss temperature ΘCW , at which magnetic susceptibility χ
diverges

χ ∼ C

T −ΘCW

The Phenomenological frustration parameter:

f = ΘCW /Tc .

No order ⇒ f →∞. A large value f > 100 is a good indication of possible QSL.
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Diagonalization

Why Majoranas? – Conserved Quantities

A physical observable Ô is conserved if [Ô,H] = 0, its eigen value is then termed a good
quantum number.

It allows us to split the Hamiltonian into different quantum sectors labeled by these
quantum numbers, thus reduce the dynamical dofs in the problem.

Extensive number of conserved quantities indicates possible exact solutions.

Majorana representation of the Hamiltonian has two sets of conserved quantities:

Link operators {ujk} and Plaquette operators {Wp}.
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