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1 Perturbative Hamiltonian

Consider the TFIM Hamiltonian:

HTFIM = −J
[∑
i

σzi σ
z
i+1 + g

∑
i

σx
]

(1.1)

which has Z2 symmetry defined by the operation:

U = exp

iπ∑
j

σx

2

 = iN
∏
j

σxj ∼
∏
j

σxj (1.2)

This is readily apparent by anti-commutation {σx, σz} = 0.

Now assume we don’t have the coupling term, so the ground state is a trivial polarized state:

|0〉 = |→→→ . . .→〉 (1.3)

There are a huge number of first excitated states:

|1〉 = |←→→ . . .→〉 , |2〉 = |→←→ . . .→〉 , |i〉 = |→→ . . .←i . . .→〉 (1.4)

whose energy is ∆ = 2gJ above g.s. E0. They are solitons since there’s no well-defined momentum or dispersion
relation.

If we add the J terms perturbatively. To the leading order of perturbation we have:

H |i〉 = −J [|i+ 1〉+ |i− 1〉] + (E0 + 2gJ) |i〉 (1.5)

To show this we calculate |δi〉 by 1st order:

while the energy remains E = E0 + 2gJ .

the exitations will then be able to tunnel to its nearby neig hbors’ position, and they gains a well-defined dispersion.
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2 Mean Field Solution[1]

The Hamiltonian is written as:
H = −J

∑
〈ij〉

Szi S
z
j − h

∑
i

Sxi (2.1)

Ignoring fluctuation:
Szi S

z
j = Szi

〈
Szj
〉

+ Szj 〈Szi 〉 − 〈Szi 〉
〈
Szj
〉

(2.2)

due to translational symmetry:
〈Szi 〉 =

〈
Szj
〉
≡ 〈Sz〉 (2.3)

so we rewrite the coupling term as:

Szi S
z
j = 〈Sz〉 (Szi + Szj )− 〈Sz〉2 (2.4)

Leave off the constant 〈Sz〉2, and apply
∑
〈ij〉 = p/2

∑
i:

H = −J 〈Sz〉
∑
〈ij〉

2Szi − h
∑
i

Sxi

= −pJ 〈S
z〉

2

∑
i

σzi −
h

2

∑
i

σxi

(2.5)

It’s readily to see that the eigenvalue is:

λ = ±1

2

√
p2J2 〈Sz〉2 + h2 (2.6)

The self-consistency equation is then:

〈Sz〉 =
Tr
[
Sze−βH

]
Tr e−βH

(2.7)

In the diagonal basis, the denominator evaluates to:

Z = Tr
[
e−βH

]
= eβλ + e−βλ = cosh(βλ) (2.8)

The numerator is:

Tr
[
Sze−βH

]
=

1

Nβ

∂ logZ

∂J ′
=

1

2

pJ 〈Sz〉√
p2J2 〈Sz〉2 + h2

(eβλ − e−βλ)

=
1

2

pJ 〈Sz〉√
p2J2 〈Sz〉2 + h2

sinh(βλ)

(2.9)

where we have defined J ′ ≡ pJ 〈Sz〉 /2. Therefore the average magnetization is:

〈Sz〉 =
pJN 〈Sz〉

2

√
p2J2 〈Sz〉2 + h2

tanh

[
β

2

√
p2J2 〈Sz〉2 + h2

]
(2.10)

At zero-temperature, tanh = 1, so that:

〈Sz〉T→0 =
N

2

pJ 〈Sz〉√
p2J2 〈Sz〉2 + h2

(2.11)

The magnetization m ≡ 〈Sz〉 vanishes at the critical value (h/J)c = p, and obey scaling m ∝ |g|1/2 where
|g| = |(h/J)− (h/J)c|.
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3 Majorana Fermions

To be consistent with reference Whence QFT, we write TFIM as

H = −J
∑
j

(σzjσ
z
j+1 + gσxj ) (3.1)

First we define our Jordan-Wigner transformation, that is, the order parameter we are to use is obtained by "attaching a
spin to a domain wall":

χj ≡ σzj τzj+1/2 = σzj
∏
j′>j

σxj′

χ̃j ≡ σyj τ
z
j+1/2 = −iσzj

∏
j′≥j

σxj′
(3.2)

both of which are self-conjugate: χ†j = χj , χ̃†j = χ̃j , so they are majorana fermion operators. Furthermore, they
satisfies fermion commutation relations if i 6= j. To see the anti-commutation relation, WLOG, suppose i < j, we have

{χi, χ̃j} = {σzi
∏
i′>i

σxi′ , σ
y
j

∏
j′>j

σxj′} = {A⊗B, Ĩ ⊗ B̃} = A⊗ {σxj , σ
y
j } ⊗ IN−j = 0 (3.3)

In the same way, we have the other two anti-commutations

{χi, χj} = {χ̃i, χ̃j} = {χi, χ̃j} = 0 ∀i 6= j (3.4)

Therefore we see χ, χ̃ are fermions that don’t have anti-particles (self-conjugate).

......

Figure 1: Visualization of the calculation of anti-commutation in Eq.(3.3)

When i = j it’s easy to see χ2
i = χ̃2

i = 1, so

{χi, χj} = {χ̃i, χ̃j} = 2δij (3.5)

and that {χi, χ̃i} = 0 still holds since {σxi , σ
y
i } = 0. We can make sense of it by saying that they are two different

flavors of fermions thus shouldn’t talk to each other.

We can also make more familiar-looking objects by making complex combinations of these majoranas:

cj =
1

2
(χj − iχ̃j) ⇐⇒ c†j =

1

2
(χj + iχ̃j) (3.6)

with
χj = cj + c†j , χ̃j = i(cj − c†j) (3.7)
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It’s simple to show that they satisfies anticommutation relations:

{ci, c†j} =
1

4
{χi − iχ̃i, χj + iχ̃j} =

1

4
({χi, χj}+ i{χi, χ̃j} − i{χ̃i, χj}+ {χ̃i, χ̃j})

=
1

4
(2δij + i0− i0 + 2δij) = δij

(3.8)

{ci, cj} =
1

4
{χi − iχ̃i, χj − iχ̃j} =

1

4
({χi, χj} − i{χi, χ̃j} − i{χ̃i, χj} − {χ̃i, χ̃j})

=
1

4
(2δij − i0− i0− 2δij) = 0

(3.9)

so for all i, j we have

{ci, c†j} = δij , {ci, cj} = {c†i , c
†
j} = 0 (3.10)

which defines a good fermion operator. Now, in order to write TFIM by these fermion operators, we need to figure out
how to write the zz-coupling term and transverse field term. Using definitions just introduced it is simple to see that the
transverse field term is

σxj = −iχ̃jχj = −i ∗ i(cj − c†j)(cj + c†j) = cjc
†
j − c

†
jcj = −2c†jcj + 1 (3.11)

note that nj = cjc
†
j can only take values 1 or 0 for occuppied or not occuppied, hence 2cjc

†
j + 1 = 1 if nj = 0;

2cjc
†
j = −1 if nj = −1. Therefore we can abbreviate the above equation as

σxj = −iχ̃jχj = −2cjc
†
j + 1 = (−1)c

†
jcj (3.12)

We can make sense of it by identifing left and right spin as

|→j〉 = |nj = 0〉 , |←j〉 = |nj = 1〉 (3.13)

i.e. the number of spin flips is the number of fermions.

The zz-coupling term is
σzjσ

z
j+1 = iχ̃j+1χj (3.14)

which can be checked by

iχ̃j+1χj = i

σyj+1

∏
k≥j+2

σxk

σzj ∏
k≥j+1

σxk

 = iσyj+1σ
z
jσ

x
j+1 = σzjσ

z
j+1.

So the TFIM can be written in a quadratic form:

H = −J
∑
j

(iχ̃j+1χj − giχ̃jχj) (3.15)

This is the TFIM in majorana representation.

4 Bogoliubov transformation

First of all let us write the Hamiltonian in terms of ci, c
†
i fermions. From the previous section we already know that the

Hamiltonian is quadratic in majoranas, so it must also be quadratic in fermions since χ, χ̃ is a linear function of c, c†.
The first term of majorana Hamiltonian can be written as

iχ̃j+1χj = −(cj+1 − c†j+1)(cj + c†j) = c†j+1cj + c†jcj+1 + c†j+1c
†
j + cjcj+1 (4.1)

the second term in majorana Hamiltonian becomes

giχ̃jχj = −g(cj − c†j)(cj + c†j) = g(c†jcj − cjc
†
j) = 2gc†jcj − g (4.2)
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hence
H = −J

∑
j

[c†j+1cj + c†jcj+1 + c†j+1c
†
j + cjcj+1 − 2gc†jcj + g] (4.3)

we now take the Fourer transform

ck =
1√
N

∑
j

cje
−ikrj , c†k =

1√
N

∑
j

c†je
ikrj (4.4)

cj =
1√
N

∑
k

cke
ikrj , c†j =

1√
N

∑
k

c†ke
−ikrj (4.5)

applying the F.T. to all terms of Hamiltonian:∑
j

c†j+1cj =
1

N

∑
jkk′

c†kck′e
−ik(rj+a)eik

′rj =
∑
kk′

c†kck′e
−ika 1

N

∑
j

e−i(k−k
′)rj

︸ ︷︷ ︸
Nδk.k′

=
∑
k

c†kcke
−ika (4.6)

∑
j

c†j+1c
†
j =

1

N

∑
jkk′

c†kc
†
k′e
−ik(rj+a)e−ik

′rj =
∑
kk′

c†kc
†
k′e
−ika 1

N

∑
j

e−i(k+k
′)rj

︸ ︷︷ ︸
Nδk,−k′

=
∑
k

c†−kc
†
ke
ika (4.7)

thus their conjugate give ∑
j

c†jcj+1 =

∑
j

c†j+1cj

† =
∑
k

c†kcke
ika (4.8)

∑
j

cjcj+1 =

∑
j

c†j+1c
†
j

† =
∑
k

ckc−ke
−ika =

∑
k

−c−kcke−ika (4.9)

where in the last step we used {ck, ck′} = 0. Therefore the fermionic Hamiltonian becomes

H = J
∑
k

[
2(g − cos ka)c†kck − i sin ka

(
c†−kc

†
k + c−kck

)
− g
]

(4.10)

which, like the majorana Hamiltonian, is also quadratic as expected. Now we can move on to apply Bogoliubov
transformation and diagonalize it.

5 Continuum Limit

5.1 scale invariance

The end result of BdG diagonalization is

εk = 2J
√

1 + g2 − 2g cos ka (5.1)
The energy is minimized at k = 0, that is

εk ≥ ε0 = 2J |1− g| = ∆(g) (5.2)
and the gap vanishes at g = 1 the critical point. For small k at critical point we have

εk = 2J
√

2(1− cos ka) ≈ 2J

√
2× 1

2
(ka)2 = c|k| (5.3)

which is relativistic with speed of light c ≡ 2Ja. Because we are interested in the melieu of the critical field, we
consider a small deviation of gc such that g → gc = 1. Using 1 = gc, we have

εk ≈ 2J

√
1 + g2 − 2g(1− 1

2
k2a2) = 2J

√
gk2a2 + (g − gc)2

= c

√
gk2 +

(
g − gc
a

)2

= c

√
k2 + (g − gc)k2 +

(
g − gc
a

)2

≈ c

√
k2 +

(
g − gc
a

)2

(5.4)

5



where in the last step we neglected (g − gc)k2 = O(δ3). So we can identify the mass as

m2 → 0 ⇐⇒ lim
g→gc

(
g − gc
a

)2

.

that is, there a diverging length scale:

ξ =
1

m
=

a

|g − gc|
.

so we expect the correlation length ξ ∼ |g − gc|−ν has the critical exponent ν = 1. Notice if we rescale space and time
according to

x→ λx t→ λzt (5.5)
with z defined by εk ∝ kz , which in our case is z = 1, hence ξ → λξ, k → k/λ, c→ λc ([c] = [Ja] = [kg ·m3/s2]
→ λ[Ja]). Then the disepersion rescales to

εk → λc
√
k2/λ2 +m2/λ2 = c

√
k2 +m2 (5.6)

which is invariant under rescaling.

5.2 continuum fermion field [2]

We define the continuum Fermi field
Ψ(xi) =

1√
a
ci (5.7)

where a is the lattice constant. Note that ci is dimensionless, so the normalization factor 1/
√
a sets the unit of field

operator Ψ to be inverse square root of length, so that the Kronecker delta becomes Dirac delta in the continuous limit
by 1/aδx,x′ ≡ δ(x− x′). The anti-commutation relations reads

{Ψ(x),Ψ†(x′)} = δ(x− x′) (5.8)

The Fourier transform becomes
Ψ(k) =

1√
L

∫
dxΨ(x)e−ikx (5.9)

where L ≡ Na. Now plug the ck →
√

1/L
∫
dxΨ(x) exp(−ikx) into the fermion Hamiltonian, the first term gives

J
∑
k

(g − cos ka)c†kck ≈ J
∑
k

(g − gc)
1

L

∫ ∞
−∞

dxΨ†(x)eikx
∫ ∞
−∞

dyΨ(y)e−iky

→ J(g − gc)
∫
dxΨ†(x)

∫
dk

2π
eik(x−y)

∫
dyΨ(y)

= J(g − gc)
∫
dx Ψ†(x)Ψ(x)

(5.10)

where we we assumed ka� 1 and have ignored O(k2) and higher order, and in the second row we used Na/L = 1
which is omitted. The second terms gives

−iJ
∑
k

sin ka c−kck ≈ −iJa
∫
dxΨ(x)

Na

L

∫
dk

2π
keik(x−y)

∫
dyψ(y)

= −iJa
∫
dxΨ(x)

(−i)∂
∂(x− y)

∫
dk

2π
eik(x−y)

∫
dyΨ(y)

= −Ja
∫
dxΨ(x)

∂

∂(x− y)
δ(x− y)

∫
dyΨ(y)

= −Ja
∫
dxΨ(x)δ(x− y)

∂

∂y

∫
dyΨ(y) = −iJa

∫∫
dxdyΨ(x)δ(x− y)∂yΨ(y)

= − c
2

∫
dxΨ(x)∂xΨ(x)

(5.11)

where we haved used {d/dx, δ(x)} = 0. Similarly we get the other term

−iJ
∑
k

sin ka c†−kc
†
k →

c

2

∫
dxΨ†(x)∂xΨ†(x) (5.12)
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Therefore, the continuous limit gives the Hamiltonian

H → v

2

∫
dx
(
Ψ†(x)∂xΨ†(x)−Ψ(x)∂xΨ(x)

)
+ ∆

∫
dxΨ†Ψ (5.13)

where ∆ = 2J(g − gc), and v = c is the velocity.

6 EOM

We’d like to consider eom of the Majorana Hamiltonian:

H = −J
∑
l

(iχ̃l+1χl − giχ̃lχl) (6.1)

The Heisenberg emo is given by i∂tO = [H,O]. Now we evaluate the commutator. Canceling i:
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Figure 2: Derivation of Heisenberg eom

∂tχj = 2J(gχ̃j − χ̃j+1)

∂tχ̃j = 2J(−gχj + χj+1)
(6.2)

In the continuous limit we rewrite χj+1 as:

χ(j + 1) = χ(xj) + a∂xχ(xj) +O(a2) (6.3)

so we can rewrite the eom by:
∂tχ(x) ≈ 2J [gχ̃(x)− (χ̃(x) + a∂xχ̃(xj))].

that is
1

2aJ
∂tχ(x) ≈ −

(
1− g
a

)
χ̃(x)− ∂xχ̃(x) (6.4)
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1

2aJ
∂tχ̃(x) ≈ +

(
1− g
a

)
χ(x)− ∂xχ(x) (6.5)

this can be reformed by defining χ± = (1/2)(χ̃∓χ), which is clear just by adding and subtracting equations. We have:

1

2aJ
∂tχ− = −∂xχ− −

(1− g
a

)
χ+ ≡ −∂xχ− −mχ+ (6.6)

1

2aJ
∂tχ̃+ = +∂xχ+ +

(
1− g
a

)
+mχ− = +∂xχ+ +mχ− (6.7)

This gives chiral fermions at critical point g → 1:

(∂0 ∓ ∂x)χ± = 0 (6.8)

away from g = 1 it becomes Dirac equation with non-zero mass m.

7 Majorana Hamiltonian

In this section we rewrite the the continuous theory near at critical point in terms of majorana field. It is clear from
the previous section that there are two majoranas, the left and the right mover, that propogate independently; each of
them is governed by its own equation of motion. The original majorana decomposition can be rewritten by χ± defined
previously. For the consistency with other literature we redefine them by flipping the sign, which doesn’t affect the eom:

χ+ =
1

2
(χ− χ̃), χ− = −1

2
(χ+ χ̃) (7.1)

their inversion gives
χ̃ = −(χ+ + χ−), χ = χ− − χ+ (7.2)

hence
Ψ =

1

2
(χ− iχ̃) =

1

2
[(χ− + iχ−)− (χ+ − iχ+)] (7.3)

so the first term in Eq. 5.13 gives

Ψ†∂xΨ† =
1

4
[(χ− − iχ−)∂x(χ− − iχ−) + (χ+ + iχ+)∂x(χ+ + iχ+)]

− 1

4
[(χ− − iχ−)∂x(χ+ + iχ+) + (χ+ + iχ+)∂x(χ− − iχ−)]

(7.4)

the second term in Eq. 5.13 gives

Ψ∂xΨ =
1

4
[(χ− + iχ−)∂x(χ− + iχ−) + (χ+ − iχ+)∂x(χ+ − iχ+)]

− 1

4
[(χ− + iχ−)∂x(χ+ − iχ+) + (χ+ − iχ+)∂x(χ− + iχ−)]

(7.5)

It is easy to see that the second rows of the above two equations will cancel, leaving only the first rows; furthermore,
the real part ofs the terms in the first rows cancel. It is then straightforward to get

Ψ†∂xΨ† −Ψ∂xΨ = −2iχ−∂xχ− + 2iχ+∂xχ+ (7.6)

so we can decouple the Hamiltonian into two:

H− =

∫
dx(−ivχ−∂xχ−) (7.7)

H+ =

∫
dx(ivχ+∂xχ+) (7.8)
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