Spin Wave Theory
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1 Magnons in Heisenberg Model
The Heisenberg interaction is:

Si-8j =5 (SFS; +578F) + i85 (1.1)
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The Hamiltonian is:

where J;; = Jj;; Ji = 0, and B = %gJMBBg. Now we move to momentum space by F.T. defined
as:

S (k)= e *Rige

e} 1 ikR; Qo
S :Nzk:e S (k)

(1.3)

we did not use the symmetric Fourier coefficient since we want a clean commutation in momentum
space, as derived below:
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where we have set A = 1. Similarly:
[S%(k1), S* (k2)] Z e Btk Ri[gE 5] = + Z e~ Bimikaly 5, G5
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in short:
(ST (K1), 87 (k)] = 257 (k1 + ko), [S%(k1), ST (k2)] = £5F (k1 + k2) (1.6)
and it’s readily to see that:
(5% (k)] = ST (k) (1.7)

Now we are going to transform the Hamiltonian to momentum space. Generically what we need is
F{24 JUS?S]@ }. By translational symmetry we rewrite this term as:

ZJUSO‘SB ZJ (r)S8SY,, (1.8)



expand spin operator in momentum space:

[ Z— 1 ik)Ri (e
S _Nzk:e 5e(k)

5 1 . (1.9)
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Then we have:
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where we have defined J(k) = >, J(r) exp(—tkr), which satisfies J(k) = J(—k) if it is symmetric
under reflection. Note that another equivalent form is sometimes useful:

1 MR R.
= NZJZ]Q k(Rj—Ri) (111)
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there is an additional factor of % due to the repeated counting of identical bonds.
The on-site operator in momentum space is:

s =% % S50 (k) = 5°(0) (1.12)
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Therefore the full Hamiltonian in momentum space is:

H=—— Z J(k) {ST(k)S™(—k) + S*(k)S*(~k)} — BS*(0) (1.13)

Let the ground state be |S) that corresponds to an overall parallel orientation of all the spins, i.e.
a product state with local magnetization S. Hence:

S71S8) =818y, S*(k)= ZeikRiSf 1S) = NS|S) 6r0 (1.14)
S8y =0, [ST(k)|S) = ZeikRisj 1S) =0 (1.15)
Now let’s calculate the eigen energy. By Eq.(1.6) tzhe first term in Hamiltonian gives:
——ZJ k)St(k :——ZJ —k)ST (k) + 257(0)] |S)
=% (Z J(k:)) 2N S |S) (1.16)
k
- —% NJ(r = 0)NS|S) =0



where at the 3rd row we used ), e thr = N 0r0. While the 2nd term of Hamiltonian gives:

Z J(k)S*(k)S*( Z J(k)S*(—k)NSby0|S)
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= —NJ(0)S?|5)
The zeeman term is trivial. Hence we have the eigen equation:
H|S)=FEy|S
9= Fols) s
Ey=—NJ(0)S2 — NSB
where Ej is the ground state energy.
Next we show that
k) = S~ (k)|5) (1.19)
is also an eigenstate of H. It’s convenient to first look at the commutation [H, S~ (k)]:
(1,87 (k) = - + Z JE){ 157 (), S~ (RS~ (=p) + S*P)S*(=p), S~ (K)] + [5°(p), S~ (W)]S* (=) |
- B[SZ( ), 57 (k)]
- Z T0){25°(k +p)S™(-p) = SIS~ (k—p) = S (k + p)S* ()} + BS~ (k)
(1.20)

recall that:
[Sz(kl), Si(kg)] = iSi(lﬁ + k‘g)
255 (k + p)S(—p) = ~257 () + 25~ (~p)S*(k + p) (1.21)
& S (p)S(k—p) = S (k — p)S*(p) — S~ (k)

we replace the 1st and 2nd term in Eq.(1.20) by the above, hence:

[H,5 (k)] = ——ZJ { k) + 25 (—p)S*(k + p)+
(1.22)

+57(k) = 5™ (k —p)S*(p) - s—<k+p>sz<—p>>}

Note that >, J(p) = NJ(r = 0) =0, so the 1st and 3rd terms in the summation evaluate to zero.
We finally find:

[H,57 (k)] = BS™(K) — - 3 J0) {257 (-p)S*(k +p) — 57 (k ~ p)S*(p) — 5~ (k + )5 (1)}
- (1.23)
Then it’s readily to apply this commutator to |S) and extract dispersion:
[H, S~ (k)] |S) = w(k) [S~(k)|9)] (1.24)
w(k) = B+25[J(0) — J(k)]| (1.25)

3



in which we have used J(k) = J(—k). Hence the eigen energy of state S~ (k) |S) is:

H(S‘(k) |s>) - (Eg + w(k:)) 1S) = E(k) (5—(;@) |5>) (1.26)
where we have defined the totol energy:
E(k) = Ey + B+ 2S[J(0) — J(k)] (1.27)

Now we normalize the excitation:

(S|(S™(k)TS™(K)|S) = (SIST(=k)S™ (k)[S)
= (S]25%(0) + S~ (k)ST(—k)|S) (1.28)
=2NS

Therefore the Normalized single-magnon state is:

k) = S7(R)1S) (1.29)

One can check [Wolfgang] which shows that magnons are bosons and carry spin-1 in a spin-1/2
system.

2 Holstein-Primakoff transformation

To arrive at an approximate solution that does not use unwieldy spin operators, we would like
to a representation that uses creation and annihilation operators in the second quantization. The
transformation read:

ST = \/ﬁa;r o(n;) (2.1)

(2

Szz = S — Ny
where we have defined:
n;, = ajai
n; (2'2)
i)=1/1— 55
bl o

where a,a’ are bosonic operators. Before going to the implemetation, let us first have a review of
its historical derivation. The building blocks of a spin Hamiltonian are:

St=57+iSY, S;=57—iS!, j=5-5; (2.3)

with n; the eigenvalue of 7, which is called the spin deviation of j-th site. For simplicity, let us
consider the case in which Sj, thus ng, is a good quantum number, such that the wavefunction can
be labelled by local spin deviations:

) =ni...n...nN) (2.4)



Now let us apply these operators to the state. The operator Sl+ will raise S7, thus lower n; by 1.
So we have:
SHlni...ong...onn) =clni...my—1...nn) (2.5)

it has to satisfy normalization condition:
> = (ni...ng...nn|S; S nt .o ong . ny) (2.6)
in order to work under n; basis, we rewrite the .S, Sl+ as:
S, St = (Sf —iSY) (S +iS)) = SPSy + SYSY + 1SSy —iSY Sy

= 8% — 5757 +i[ST, 5] = S(S+1) — (S —m)* = (S —m)
=2S5n; —ny(n; — 1) (2.7)

= (25) <1 - "12; 1) ny

-1
¢ =28 ”12 Vi (2.8)

so that

SHint...on...onn) = V28

—1
"lQS Sl o — 1. ) (2.9)

introducing the creation and annihilation operator af, a, the above can be rewritten as:

Sl+ ]nl > \/7 1—ﬁal|n1 ..nN) E\/ﬁgﬁ(ﬁl) dl (2.10)

where I have used e to emphasize an operator. Hence we have the first Holstein-Primakoff trans-
formation:

S;™ = V28 ¢(iy) @ (2.11)

The mapping of S;” can be derived in the same way.

2.1 HP transformation of Heisenberg ferromagnet

In this section we will apply the symmetric Fourier transform to bosonic operators:
R o P L T S (2.12)
- 19 - L :
N i k /N - 7

they can be interpreted as magnon annihilation or creation operators. Now we rewrite the Heisen-
berg Hamiltonian by bosons:

585 = (V2So(ni)a;) (V2Sala(ny)) = 286(ni)aial(ny) (2.13)
S7S7 = (S —ni) (S —ny) = S®+ninj — S(n; +n;) (2.14)

Note that:

ZJUS n; + n;) —2SZJ”nJ —QSZJ”ZTL] =25J(0 Zn] (2.15)



SQZJZ-J»:SZZ ZJ” = NJ(0)S” (2.16)
ij

so the Hamiltonian in boson representation is:

H=Ey+2SJ(0 an — QSZ Jij(n;) aia; qb n;) Z Jijnin; (2.17)

To work explicitly with H we have to carry out an expansion of the square root in ¢(n;):

2
n; n; n; _
i) =1- 55 =1~ 15~ 3550 ~ 05 (2.18)

The transformation is thus only reasonable when there is a physical justification for terminating
the infinite series. The simplest approximation is the spin-wave approximation, where we only keep
n; to its lowest (linear) power. This can be justified at low temperatures, at which only a few
magnons are excited. To show this, we first approximate:

¢(n;) ~ 1—%

and plug into Hamiltonian and keep the linear only.

H=EFEy+25J(0 Zn, - 252 Jij < —) a,a} (1 - %) — Z Jijnin;

T
n; a;a; 1
= FEy+ QSJ(O) ZTL, - Z Jij <25a,~a} — Eaia;r. — 5 J n; + &gniaia;nj> - Z Jijnmj
~ Ey +28J(0 an - 252 Jijaial

= Fy+2S Z 0ij — Jij) aTa]
(2.19)

where in the last step we have switch the order of a; and a;r- and swapped their indices. This will

not introduce the 1 = [a;, a;r] since it is mutiplied by J;; = 0. Then it is readily to diagonalize by a
F.T.

H = E0+Z )alay, (2.20)

with
w(k) =25 (J(0) — J(k)) (2.21)
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