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1 RBM][I]

A RBM is a bipartite binary probabilistic graphical model corresponding to the following distribu-

tion,

p(o,h) = - expl~E(v, h)]

(1)

which assigns a probability to every possible pair of a visible (v) and a hidden vector (h) via this

energy function energy function:
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The probability of v or h is given by a marginalization:
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The derivation of the log probability w.r.t. w;; is:
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this leads to the gradient ascent learning rule of w;;:
dwij = B(Edata [vili;] — Emodel [vih;])
and by the same token we can derive the updating process for a; and b;:

da; = B(Edata [vi] — Emodel [vi])
6b; = B(Eqata [hj] — Emodel [7])

where [ is the learning rate.

(2)



Now we need to figure out how to calculate the relevant expectation values mentioned above.
We start with the conditional expectation Eqata [vih;]. The key is to sample the probability p(h|v).
We can easily write down the conditional probability:

p(h, U) %e—E(’U,h) efE(v,h)
p(v) - % zh e—E(,h) Zh e—E(v,h)

and conditional probability for a single hidden node h; can be derived by marginalization:

E{hk}—h]- e—E(v,h)
Zh e—E(v,h)

p(hlv) =

(7)
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For convenience we rewrite the energy function in the following form which separates the hidden
and the visible nodes:

E(w,h)=- Y !hj (bj + > wij”i)] = > awi=-Y vk = > aw (9)
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so the the Boltzmann factor in the numerator now takes the form:

exp[—FE(v, h)] = H e~ 4V H e h (10)
i J

Therefore the denomiator in Eq.8 can be written as
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and the numerator:
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hence Eq.8 becomes a Logistic form:
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Since each element in h; is binary, we can readily write down the conditional probability for h; = 1,0
conditioned on wv:
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By the same token we can show p(v;|h) is also a similar sigmoid function:

ploi=1h) =0 | ai+ > wih; (14)
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Algorithm 1 Sampling Egata [vih;]

Input: Data batch (v, - ,vn) and initial parameters of RBM
Output: Eqata [vih;]
1. Initialize the M = 0 matrix
2. For each v in data batch:
Sample h ~ p(hlv;) = o(b +wv)
MM+ UthT
3. Eqata[vh] <+ M/N

Algorithm 2 Sampling Ep,oder [vih;]

Input: Initial parameters of RBM

Output: E,oqel [Vih;]

1. Initialize the M = 0 matrix

2. Initialize v to be a random vector

3. Repeat N, times (until convergence):
Sample h ~ p(hlv) = o(b +w ')
Sample v ~ p(v|h) = o(a+ wh)
M < M +ovh'

3. Epodal[vh'] ¢ M/N,

We are now prepared to sample calculate Eqata [vihj] = D), vihjp(h|v) for every pair of ¢ and j.

Next we need to compute Enodel [vil;] = Zv,h v;h;, which is significantly harder since we are
drawing correlated samples. Nevertheless, note that elements in v or h are not correlated within
the same layer, so, assuming convergence is achievable, we can write down a similar algorithm
sampling the hidden and visible layer one after another:

However, this scheme usually converges very slowly since samples of h and v are correlated.
This is exactly where the contrastive divergence (CD) has a part to play. This can simply be done
by setting N, = n for CD,,, where n is common chosen to be n = 1.
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