
Notes on RBM

Shi Feng

September 23, 2022

1 RBM[1]

A RBM is a bipartite binary probabilistic graphical model corresponding to the following distribu-
tion,

p(v, h) =
1

Z
exp[−E(v, h)] (1)

which assigns a probability to every possible pair of a visible (v) and a hidden vector (h) via this
energy function energy function:

E(v, h) = −
∑

i∈visible
aivi −

∑
j∈hidden

bjhj −
∑
i,j

wijvihj (2)

The probability of v or h is given by a marginalization:

p(v) =
1

Z

∑
h

exp[−E(v, h)], p(h) =
1

Z

∑
v

exp[−E(v, h)] (3)

The derivation of the log probability w.r.t. wij is:

∂ log p(v)

∂wij
=

1

p(v)

(
− 1

Z2

∂Z

∂wij

)∑
h

e−E(v,h) +
1

p(v)

∑
h

vihj
e−E(v,h)

Z

= − 1

p(v)

∑
h,v

vihj
e−E(v,h)

Z

(∑
h

e−E(v,h)

Z

)
+
∑
h

vihj
p(v, h)

p(v)

= −
∑
h,v

vihjp(v, h) +
∑
h

vihjp(h|v)

= −Emodel [vihj] + Edata [vihj]

(4)

this leads to the gradient ascent learning rule of wij :

δwij = β(Edata [vihj]− Emodel [vihj]) (5)

and by the same token we can derive the updating process for ai and bj :

δai = β(Edata [vi]− Emodel [vi])

δbj = β(Edata [hj]− Emodel [hj])
(6)

where β is the learning rate.

1

Now we need to figure out how to calculate the relevant expectation values mentioned above.
We start with the conditional expectation Edata [vihj]. The key is to sample the probability p(h|v).
We can easily write down the conditional probability:

p(h|v) =
p(h, v)

p(v)
=

1
Z e
−E(v,h)

1
Z

∑
h e
−E(v,h)

=
e−E(v,h)∑
h e
−E(v,h)

(7)

and conditional probability for a single hidden node hj can be derived by marginalization:

p(hj |v) =
∑

{hk}−hj

p({hk}|v) =

∑
{hk}−hj e

−E(v,h)∑
h e
−E(v,h)

(8)

For convenience we rewrite the energy function in the following form which separates the hidden
and the visible nodes:

E(v, h) = −
∑

j∈hidden

[
hj

(
bj +

∑
i∈visible

wijvi

)]
−

∑
i∈visible

aivi ≡ −
∑
j

γj(v)hj −
∑
i

aivi (9)

so the the Boltzmann factor in the numerator now takes the form:

exp[−E(v, h)] =
∏
i

e−aivi
∏
j

e−γj(v)hj (10)

Therefore the denomiator in Eq.8 can be written as

∑
h

e−E(v,h) =
∏
i

e−aivi
∑
h

∏
k

e−γk(v)hk =

[∏
i

e−aivi

] ∑
hj={0,1}

e−γj(v)hj

 ∑
{hk}−hj

∏
k 6=j

e−γk(v)hk


and the numerator:

∑
{hk}−hj

e−E(v,h) = e−γj(v)hj

[∏
i

e−aivi

] ∑
{hk}−hj

∏
k 6=j

e−γk(v)hk


hence Eq.8 becomes a Logistic form:

p(hj |v) =
e−γj(v)hj

1 + e−γj(v)
(11)

Since each element in hj is binary, we can readily write down the conditional probability for hj = 1, 0
conditioned on v:

p(hj = 1|v) =
exp(−bj −

∑
iwijvi)

1 + exp(−bj −
∑

iwijvi)
= σ

(
bj +

∑
i

wijvi

)
(12)

p(hj = 0|v) = 1− p(hj = 1|v) =
1

1 + exp(−bj −
∑

iwijvi)
(13)

By the same token we can show p(vi|h) is also a similar sigmoid function:

p(vi = 1|h) = σ

ai +
∑
j

wijhj

 (14)

2

Algorithm 1 Sampling Edata [vihj]

Input: Data batch (v1, · · · , vN) and initial parameters of RBM
Output: Edata [vihj]
1. Initialize the M = 0 matrix
2. For each vt in data batch:

Sample h ∼ p(h|vt) = σ(b + w>v)
M←M + vth

>

3. Edata[vh
>]←M/N

Algorithm 2 Sampling Emodel [vihj]

Input: Initial parameters of RBM
Output: Emodel [vihj]
1. Initialize the M = 0 matrix
2. Initialize v to be a random vector
3. Repeat Nc times (until convergence):

Sample h ∼ p(h|v) = σ(b + w>v)
Sample v ∼ p(v|h) = σ(a + wh)
M←M + vh>

3. Emodel[vh
>]←M/Nc

We are now prepared to sample calculate Edata [vihj] =
∑

h vihjp(h|v) for every pair of i and j.
Next we need to compute Emodel [vihj] =

∑
v,h vihj , which is significantly harder since we are

drawing correlated samples. Nevertheless, note that elements in v or h are not correlated within
the same layer, so, assuming convergence is achievable, we can write down a similar algorithm
sampling the hidden and visible layer one after another:

However, this scheme usually converges very slowly since samples of h and v are correlated.
This is exactly where the contrastive divergence (CD) has a part to play. This can simply be done
by setting Nc = n for CDn, where n is common chosen to be n = 1.

References

[1] Hinton, G. E. A practical guide to training restricted boltzmann machines. In Neural networks:
Tricks of the trade, 599–619 (Springer, 2012).

3

	RBMhinton2012practical

