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Sketch

In last semester I learned the ground state of Kitaev’s honeycomb Hamiltonian
by Majorana fermionization, and a brief discussion of entanglement entropy in
Toric code model,i.e. the TEE in Abelian limit, or the Toric code (TC) limit,
of Kitaev honeycomb Hamiltonian.

Based on last term paper, my goal in this paper is to understand how the
Abelian phase (TC) and non-Abelian phase (Gapped Phase B) in Kitaev model
differ from each other. Specifically, I will (1) discuss the exact solution of Toric
code model and understand its ground state. (2) review topological properties
of ground state, anyon excitations, fusion rules and braiding statistics of anyons
in both phases.

1 Ising gauge Theory

This section I will dicuss the Ising gauge theory using transveral-field Ising
model (TFIM) as a toy model. Of course it is a digression from the main topic,
though, the purpose is to familiarize myself with the lattice gauge language and
some terminology.

1.1 Construction of Gauge Theory from TFIM

First of all, let us construct a gauge theory on dual lattice. Connsider the TFIM
model in d = 2 lattice:

H = −J
∑
〈ij〉

σzi σ
z
j − h

∑
j

σxj (1.1)

To build a gauge theory, some refundancy must be introduced. This can be
done by defining a dual lattice, in contrast to the original direct lattice. The
dual lattice has sites defined on the center of plaquettes in direct lattice, and
the dofs live on links:

τx
ĩj̃
≡ σzi σzj (1.2)
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where ĩj̃ is the link on the dual lattice that intersects the link ij on the direct
lattice. Note that by going to the dual lattice, the number of dofs doubles. This
is beacuse there are 2N links on a lattice with N vertices (for N → ∞ or on
a torus). In other words, there are 2N τs on dual lattice in contrast to N σs
on direct lattice. However, duality is supposed to be an exact rewriting of the
original theory, so we need N constraints to get rid of the redandency.

Figure 1: Dual lattice of the 2d TFIM. The dual lattice sites lie at centers of
plaquettes the direct lattice, with dofs living on links.

The construction of such constraint is simple in this toy model. The overall
idea is that τs must satisfy the same Pauli algebra defined on the direct lattice.
Consider a set of 4 links that emanate from a single site on the dual lattice, i.e.
four links that bound a plaquette on the direct lattice. Their product is:

τ1̃2̃τ1̃3̃τ1̃4̃τ1̃5̃ = (σz1σ
z
2)(σz2σ

z
3)(σz3σ

z
4)(σz4σ

z
1) = 1 (1.3)

Therefore the product of the four τx is constrained to be 1. Such local constraint
is defined by the loop around a vertex of the dual lattice, hence, the total number
of constraints isN , which exactly matches our need to recover the physical space.
To write it compactly:∏

+

τx
ĩj̃

= 1 for all fual lattice sites (1.4)

Now we have rewritten the coupling term of TFIM in terms of τx, the next step
is to figure out how to rewrite the flipping term σx in the original model. In
2d, flipping a spin on i in direct lattice corresponds to exiting 4 domain walls
around the site, which forms a plaquette on the dual lattice. Note that the
domain wall operators τ also live in Pauli space, to flip eigen states of τx on a
plaquette, we simply apply 4 τzs:

σxi ⇔
∏
ĩj̃∈�

τz
ĩj̃

(1.5)
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Therefore the gauge theory of TFIM is written as:

H = −J

∑
〈ij〉

τx
ĩj̃

+ g
∑
�

∏
ĩj̃∈�

τz
ĩj̃

 (1.6)

with h = g/J and contraint by: ∏
+

τx
ĩj̃

= 1 (1.7)

Now let us consider the gauge theory introduced above as a fundamental model
(to emphasize this, we’ll stop using ‘barred’ indices, to remind ourselves that
the τs are now the ‘direct’ variables. For a pure gauge theory, the fundamental
Hamiltonian is:

H = −J

∑
〈ij〉

τxij + g
∑
�

∏
ij∈�

τzij

 (1.8)

with the gauge transformation defined as:

Gi =
∏
+

τxij (1.9)

in which all links ij emanate from site i. Gi can be viewed as a local Z2 gauge
transformation operator. This can be shown by G†i τ

z
l Gi = ζτzl , where ζ = −1

only if the site i is at the end of link l, and ζ = 1 otherwise.
It is readily to check the gauge transformation operator commute with

Hamiltonian (Gi and H share at most 2 common links that produce terms
with oppsite signs):

[H,Gi] = 0 (1.10)

From the definition in Eq.(1.9) Gi clearly obeys G2
i = 1, so that an energy

eigen state of H |ψ〉 must satisfy Gi |ψ〉 = ± |ψ〉. If we are to view the original
lattice as the fundamental, then our pure gauge theory must have a conserved
Gi, i.e. Gi = 1. In other words, any quantum state |ψ〉 generated by the gauge
Hamiltonian is physical only if it satisfies:

Gi |ψ〉 = |ψ〉 (1.11)

We say that the state has a gauge symmetry where the gauge transformation
evaluates to 1 on every state in the physical Hilbert space.

1.2 Confined Phase

Now we turn to the phase diagram of Ising gauge theory. First of all wee look
at the weak coupling limit i.e. g � 1. The Hamiltonian becomes:

H ' −J
∑
〈ij〉

τxij with Gi = 1 (1.12)
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The ground state is simply |g.s.〉 =
∣∣{τxij = 1}

〉
which satisfies the constraint

Gi = 1 as well.
On adding a small but non-zero g, some of the links will be excited to

τxij = −1, thus equivalent to some links that have nonzero electric fields; of
course, to satisfy the constraint, the field lines must form closed loops (in the
spin language, there are a few domain walls) This is similar to the fact that
Ising-ordered phase does not have all spins up or down — we can have a few
domains of minority spins without becoming paramagnetic. In other words, the
electric field lines are confined.

1.3 Deconfined Phase

This is the opposite limit compared to confined phase, where g � 1:

Hg=∞ = −Jg
∑
�

∏
�
τzij , with Gi = 1 (1.13)

Note that the magnetic flux operator
∏
� τ

z
ij commutes with Hamiltonian, so

the ground state occurs when magnetic flux through each plaquette is trivial:∏
�
τzij = +1 for all � (1.14)

Now we construct the ground state. Let’s start with the trivial configuration in
τz basis, where |Ψ0〉 =

⊗
ij

∣∣τzij = 1
〉
. Note that this wavefunction is not gauge

invarient since apparently Gi will flip spins on 4 links thus Gi |Ψ0〉 6= |Ψ0〉. Such
a local gauge transformation can be fixed by redefining our wavefunction:

|Ψ〉 = |Ψ0〉+Gi |Ψ0〉 (1.15)

such that
Gi |Ψ〉 = Gi |Ψ0〉+G2

i |Ψ0〉 = Gi |Ψ0〉+ |Ψ0〉 (1.16)

which is invariant under transformation by Gi. By taking all local gauge trans-
formations into consideration, the exact ground state is:

|g.s.〉 =
∏
i

(1 +Gi) |Ψ0〉 (1.17)

since [H,Gi] = 0, the wavefunction above has the same energy as |Ψ0〉. Es-
sentially, we’re superposing all gauge-equivalent wavefunction into one gauge-
equivalent class. In a gauge theory, different physical states are characterised
by different gauge-equivalent classes.

2 Toric Code Model

Toric code Hamiltonian has dofs living on links, such that:

HTC = −Jm
∑
p

Bp − Je
∑
s

As (2.1)
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where Bp and As are the plaquette operator and star operators shown in Fig.(2):

Bp =
∏
�
τzl , As =

∏
+

τxl (2.2)

Note that there’s no constraint on this Hamiltonian, and is written purely in

Figure 2: Bp and As are the plaquette operator and star operators defined on
square lattice

terms of local dofs.

2.1 Ground State Wavefunction

The key of the construction of ground state is noting that the Hamiltonian is
made up of purely commuting terms. It’s simple to check that:

[As, As′ ] = 0

[Bp, Bp′ ] = 0

[As, Bp] = 0

(2.3)

so that both plaquette and star operators commute with Hamiltonian:

[As, H] = [Bp, H] = 0 (2.4)

so that As and Bp can be simultaneously diagonalized. Assuming J > 0, the
ground state is when all Bp = 1 and As = 1. However, we would like to write
the ground state in the fundamental dofs, i.e. the links. This can be done by
introducing the classical variable sl = ±1 in τz basis. The ground state is some
superposition of vortex-free configurations. We must have:

Bp |ψ0〉 = |ψ0〉 ⇒ |ψ0〉 =
∑
v.f.

cs |s〉 (2.5)
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Note that As is a good quantum number, which evaluates to +1 at g.s.

As |ψ0〉 = |ψ0〉 (2.6)

This condition holds true if and only if all the cs are equal for each orbit of the
As. Hence the ground state wavefunction is an equal-weight superposition of
vortex-free configuration.

We can also construct the ground state from the gauge point of view. We
can view As as a gauge transformation operator. A physical states must satisfy:

As |Ψ0〉 = |Ψ0〉 (2.7)

We can choose to start with the trivial |Ψ0〉 =
⊗

l |sl = 1〉, which is not gauge
invarient since apparently As will flip spins on 4 links thus As |Ψ0〉 6= |Ψ0

〉. Such
a local gauge transformation can be fixed by redefining our wavefunction:

|Ψ〉 = |Ψ0〉+As |Ψ0〉 (2.8)

such that
As |Ψ〉 = As |Ψ0〉+A2

s |Ψ0〉 = As |Ψ0〉+ |Ψ0〉 (2.9)

now we have acquire the gauge invariant wavefunction. In this way, we write
the ground state as:

|Ψ〉 ∝
∏
s

(1 +As) |Ψ0〉 (2.10)

Essentially, we’re superposing all gauge-equivalent wavefunction into one gauge-
equivalent class.

2.2 Ground State Degeneracy

The Degeneracy of TC ground state is topological, in which any local operator
has vanishing off-diagonal matrix elements between them in the thermo- dy-
namic limit. Therefore there is each dimension in the ground state is locally a
”superselection” regime. We can, however, define non-local operators on a torus
i.e. Wilson loops, as shown in Fig.(3)

Such Wilson loop operators transform the ground state from one of the
degenerate state to the other. On the torus, we define Wilson loops as:

W e
x/y =

∏
j∈Ce

x/y

τzj (2.11)

Wm
x/y =

∏
j∈Cm

x/y

τxj (2.12)

where Cex/y is a set of spins on bond parallel to the non-contractable loops in
x or y direction, and Cmx/y is a set of spins on bonds perpendicular to the non-
contractable loop that connects the centers of plaquettes in x or y direction.
It’s simple to check the following commutation relations:

[W e
x/y, As] = [W e

x/y, Bp] = 0

[Wm
x/y, As] = [Wm

x/y, Bp] = 0
(2.13)
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Figure 3: The path of non-local Wilson loop operators on a torus.

so that
[W

e/m
x/y , H] = 0 (2.14)

Furthermore, due to the anti-commuation relation of τx and τz, different types
of Wilson loops anti-commuate if they are penpendicular to each other:

{W e
x ,W

m
y } = 0 (2.15)

Now we are going to show that such anti-commuation relation necessarily bring
degeneracy in the energy spectrum. Let |Ψ〉 be an eigen state of Hamiltonian
with energy EΨ. Due to Eq.(2.14), we have:

HW e
x |Ψ〉 = EΨW

e
x |Ψ〉 (2.16)

so that W e
x |Ψ〉 is also an eigen state. Same is true for Wm

y . Now there are two

possible cases, that whether or not W
e/m
x/y leave the eigen state |Ψ〉 unchanged.

Suppose wavefunction is not effected by the Wilson loops, i.e.

W e
x |Ψ〉 = c |Ψ〉 = |Ψ〉 (2.17)

where c must be 1 since (W
e/m
x/y )2 = 1. so that:

Wm
y W

e
x |Ψ〉 = Wm

y |Ψ〉 (2.18)

from the anti-commutator we have:

W e
xW

m
y |Ψ〉 = −Wm

y W
e
x |Ψ〉 = −Wm

y |Ψ〉 (2.19)

notice that Wm
y |Ψ〉 is also an eigen state. Such an eigen state, according to our

assumption Eq.(2.17), must remain unchanged:

W e
xW

m
y |Ψ〉 = Wm

y |Ψ〉 (2.20)
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compare Eq.(2.19) and Eq.(2.20) we have 1 = −1, which is impossible. There-
fore our assumption in Eq.(1.28) is wrong, the oppsite is true. This applies to
both types of Wilson loop:

W
e/m
x/y |Ψ〉 = |Ψ′〉 6= |Ψ〉 (2.21)

The algebra must hold in any eigen subspace of the Hamiltonian. Therefore We
conclude that all eigen subsapce of the Hamiltonian, including the ground state
space, must be degenerate. In Other words, the off-diagonal elements of Wilson
loops must NOT be zero, that one of the degenerate states can tunnel to the
other only through global operation.

2.3 Exitations

Figure 4: Electric and magnetic path operators. They create a pair of excitations
at the ends of the string

2.3.1 Charge Excitation

The low-lying excitations of the toric code come in two varieties, that can be
identified with the electric charges and magnetic vortices of a Z2 gauge theory.
We define an electric path operator, as is shown in Fig.(4):

W
(e)
C (s1, s2) =

∏
l∈C

τzl (2.22)

the path connects 2 vertices s1 and s2. It’s apparent that:

[W
(e)
C , Bp] = 0 (2.23)

Note that W
(e)
C commutes with most but not all star operators. The exception

occurs when the star operator is at the end points of electric path C, which
we label As1 and As2 . On the shared link, The σz operator in electric path
anti-commutes with the σx of As. so that:

W
(e)
C (s1, s2)As1 = −As1W

(e)
C (s1, s2)

W
(e)
C (s1, s2)As2 = −As2W

(e)
C (s1, s2)

(2.24)
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Let Eq.(2.24) act on the ground state wavefunction, by gauge invariance:

W
(e)
C (s1, s2) |Ψ0〉 = −As1W

(e)
C (s1, s2) |Ψ0〉 (2.25)

same is true for As2 . It’s convenient to define: W
(e)
C (s1, s2) |Ψ0〉 ≡ |Ψs1,s2〉, such

that:

|Ψs1,s2〉 = −As1 |Ψs1,s2〉
|Ψs1,s2〉 = −As2 |Ψs1,s2〉

(2.26)

Therefore |Ψs1,s2〉 is an energy eigen state of HTC with energy 4Je above the
ground state. We interpret this as a state with ‘charges’ (e-particles) at the
sites s1 and s2, each cost 2Je to create.

2.3.2 Magnetic Vortices

Define an ”magnetic path” W
(m)
C (p1, p2):

W
(m)
C (p1, p2) =

∏
l∈C

τxl (2.27)

where p1 and p2 are labels of plaquettes, and path C is path on dual lattice
(centers of the grid). A link belongs to path C is and only if it is intersected by
it. In the same way, we have the commutation relation:

[W
(m)
C , As] = 0 (2.28)

and All but two plaquette operators Bp1 and Bp2 at the ends of path C commute

with W
(m)
C . Similarly, because of the anti-commutation of σz and σx at the ends:

Bp1 |Ψp1,p2〉 = − |Ψp1,p2〉 (2.29)

so that the plaquette Bp1 in Hamiltonian raises the ground state energy by
4Jm. We interpret this as a state with ‘magnetic fluxes’ (m-particles) at the
plaquettes p1 and p2 , each costs 2Jm to create.

2.4 Anyon Statistics in Toric Code

2.4.1 Mutual Statistics and Fusion Rules

Let consider taking a charge excitation e around a magnetic vortex excitation
m. Let |ξ〉 be a state contatining a magnetic vortex at p1. Let C be a closed
loop around p1, then the braiding operation is defined as:(∏

l∈C

τzl

)
|ξ〉 =

 ∏
p∈∂C

Bp

 |ξ〉 (2.30)
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(d)

m m
e e

Figure 5: Start with a pair of m particles and e particles created by their own
excitation operators. To make the operation well-defined we assume particles of
each pair are seperated with a large enough distance. Taking one of the e particle
around a loop that encloses a m particle generates a phase in wavefunction

where on the R.H.S. is a lattice version of Stokes’ theorem. Pictorially it this
operation is shown below: Note that we have shown in the previous section that:

Bp1 |ξ〉 = − |ξ〉 (2.31)

so that  ∏
p∈∂C

Bp

 |ξ〉 = − |ξ〉 (2.32)

hence we see that upon braiding e around m, wavefunction changes by |ξ〉 →
− |ξ〉, i.e. we pick up a phase of π. Since e and m are bosons, the composite
particel f = e×m is a fermion. This is the first fusion rule:

e×m = f (2.33)

Consider when two e−type excitations are moved to the same star, the loop
Ce that connects them becomes a closed loop, thus the state returns to ground
state. This is because there are no ”dangling bonds” in the path that a plaquette
operator share either 0 or 2 links with Ce, hence we recover the commutation
relation. Therefore we have the fusion rule:

e× e = 1 (2.34)

where 1 stands for the ground state or vacuum. In the same way, moving two
m−type excitations to the same plaquette creates a closed loop Cm, with which
all stars and plaquettes commute. so the second fusion rule is:

m×m = 1 (2.35)

Note that in all of the arguments above we have moved the particles on con-
tractible loops only. If we were to create a pair of e or m type particles and
take one of the pair excitation to go around an non-contractable loop, we will be
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effectively apply an Wilson loop operator W
e/m
x/y on the manifold of topologically

degenerate ground states.
From these we can now conclude the braiding statistics using a pictorial

scheme, with the worldline moving upwards. The braiding relation of two e
particles, as well as m particle, obeys usual boson statistics, while the brading
relation between e and m does not.

Figure 6: The braiding relation of two e particles, two m particles, and between
e-m particles

Figure 7: The braiding relation of two f = e × m composite particles. One
exchange brings a phase factor of −1. This is done by spliting the braiding of
f particle into the braiding relations defined in the previous figure.

2.4.2 Degeneracy from Mutual Statistics

We can also explain the ground state degeneracy on the torus by mutual statis-
tics of excitations. First of all, let us dicuss the connection between Wilson
loops and mutual statistics.

Suppose there are at leat one particle types e.g. e orm, with mutual statistics
6= 1. Let us define an abstract operator Z that creates a pair of an excitation,
takes one of the particle around a non-contractable loop C1 and annihilates the
pair. Similarly we can define another operator X that creates another pair of
excitations, takes one of them around the other non-contractable loop C2 and
annihilates the pair. Each of these operators preserves the ground state of the
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system, i.e. the state with no excited quasi-particles ([X , H] = [Z, H] = 0).
If these two operators anti-commute, we have a fermionic mutual statistics; if
commute, a bosonic mutual statistics:

Z−1X−1ZX = ±1 for boson and fermion (2.36)

In general, Z, X don’t necessarily (anti)commute, the result could be an arbi-
trary phase such that:

Z−1X−1ZX = e−i2θ (2.37)

which stands for an generic abelian statistics.
We can explain such statement by the following. First, the process defined

by X−1X is topologically equivalent a straight line in spacetime, in comformaty
with that fact X−1X = 1.

Figure 8: Z−1Z is topologically equivalent a trivial straight line in spacetime

The spacetime topology can be shown as that one anyon world line sweeps
around the loop C1 and then immediately traverses the same path in the reverse
order, thus can be smoothly deformed to a topologically trivial path. Same is
also true for Z−1Z.

In a similarly way, the operator Z−1X−1ZX can be deformed smoothly to
one in which two pairs of anyons are created, one of the anyons winds clock-
wise to the other and both pairs annihilate themselves. The winding-around
is equivalent to two successive exchanges. If we aussume the exchange of two
particles brings a phase e−iθ, then two exchanges will be accompanied by a total
phase change e−2iθ, in keeping with Eq.(2.37). Particlularly, if [X ,Z] = 0 (or
{X ,Z} = 0), i.e. θ = 0(π), then we have bosonic(fermionic) statistics.

With the argument above, we’re ready to look into the degeneracy. Since Z
and X both commute with Hamiltonian, applying these operators to an eigen-
vector must result in the same eigenspace labeled by the same eigenvalue, i.e.
they preserve the eigenspace. However, assuming Z and X do not commute,
they cannot be diagonalized simultanously. Assume |α〉 is an eigenvector of H:

X |α〉 = eiα |α〉 (2.38)

according to Eq.(2.37):

XZ |α〉 = ei2θZX |α〉 = e2iθeiαZ |α〉 (2.39)
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Suppose that θ ∈ (0, 2π) and is a rational multiple of 2π, such that:

θ = πp/q with p < 2q (2.40)

where q, p are integers with no common factor other than p, q themselves. Then
the eigenvalue corresponding to the eigenvector Z |α〉 is:

exp

[
α+

(
2πp

q

)
k

]
(mod 2π) (2.41)

we then conclude that X must have at leat q distinct eigenvalues, i.e. q super-
selective degenerate sectors. In the Toric code Hamiltonian, the e−type and
m−type particle anticomute, so that the exchange factor is θ = π/2, so that
both W e and Wm have 2 distinct eigenvalues, thus 4-fold degenerate in total.

3 Honeycomb Model

3.1 Introducing a Gap by Breaking TR

Figure 9: The honeycomb lattice. (a) anisotropic coupling in x, y, z bonds. (b)
labeling of sites in a plaquette wp. (c) The TR-breaking couplings are next-
nearest neighbor couplings indicated by dashed lines. (d) unit vectors of B.L.

In Phase B there are two types of elementry excitations: gapped vortices
and gapless fermions. Vortices in this phase do not have well-defined statistics,
i.e. the effect of winding one vortex around the other depends on details of the
process. However, we can open a gap in the gapless phase by applying a pertur-
bation that breaks the time-reversal(TR) symmetry. Thereofre we reformulate
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the Hamiltonian as:

H =− Jx
∑

x−links

σxi σ
x
j − Jy

∑
y−links

σyi σ
y
j − Jy

∑
z−links

σzi σ
z
j

+K
∑

(i,j,k)∈p

σxi σ
y
j σ

z
k

(3.1)

where the last term being the perturbation that breaks the TR:∑
(i,j,k)∈p

σxi σ
y
j σ

z
k =σx1σ

y
2σ

z
3 + σx2σ

y
3σ

z
4 + σx3σ

y
4σ

z
5

+ σx4σ
y
5σ

z
6 + σx5σ

y
6σ

z
1 + σx6σ

y
1σ

z
2

(3.2)

Next fermionize spins into majoranas by:

σαi = ibαi ci, Di = bxi b
y
i b
z
i ci ≡ 1 (3.3)

furthermore define link operators which has eigenvalue uij = ±1:

ûij = ibαi b
α
j (3.4)

in which α = x, y, z that depends on the type of link (ij). Therefore we can
rewrite the coupled spins as:

σαi σ
α
j = −iûijcicj and σxi σ

y
j σ

z
k = −iûikûjkDkcicj (3.5)

so that we can write the Hamiltonian compactly as:

H =
i

4

∑
ij

Âijcicj (3.6)

with redefined Âij :

Âij = 2Jij ûij + 2K
∑
k

ûikûjk (3.7)

where the first term in Âij stands for n.n. coupling between ci and cj , whiel

the second term in Âij stands for next-to-nearest neighbor interactions. Upon
fixing uij , all b−operators are removed completely, thus Aij in the Hamiltonian
are just a set of real numbers:

H = H1 +H2 ≡
∑
ij

2Juijcicj +
i

4

∑
ij

2K
∑
k

uikujkcicj (3.8)

the Hamiltonian then is reduced to a hopping model of majoranas. Let us now
work in the vortex-free sector and set bonds to be isotropic so that Jx,y,z = J .
First, transform H1 to momentum space by:

ci =
1√
N

∑
~k

ei
~k·~ria~k; a~k =

1√
N

∑
i∈A

e−i
~k·~ricj

cj =
1√
N

∑
~k

ei
~k·~rj b~k; b~k =

1√
N

∑
j∈B

e−i
~k·~rjck

(3.9)
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which has been done in last year’s term-paper:

H̃1 =
1

4

∑
~k

f(k)ã†~k
b̃~k + h.c. (3.10)

where we have defined ã = e−iπ/4, b̃ = eiπ/4, and f(k) = 2J
∑
α=1,2,3 e

ik·sα . In
a similarly way, transform H2 into momentum space:

H2 =
1

4

∑
k

∆(k)(ã†kãk − b̃
†
kb̃k) (3.11)

where ∆(k) is defined as:

∆(k) = 4K (− sin(k · n1) + sin(k · n2) + sin(k · (n1 − n2) ) (3.12)

combine H1 and H2, the Hamiltonian becomes:

H =
1

4

∑
k

(ã†k b̃†k)

[
∆(k) f(~k)

f∗(~k) −∆(k)

]
(ãk b̃k) (3.13)

The eigen energy is then:

E(k) = ±
√

∆(k)2 + f(k)2 (3.14)

which has a finite gap ∆(k) above ground state in contrast to non-perturbative

Figure 10: (a) The dispersion of non-perturbative model, fermionic excitation
is gapless. (b) Upon breaking TR, a gap ∆ is opened in the gapless phase.

Hamiltonian. The ground state energy for half-filling is thus given by:

E0 = −
∑
kx

∑
ky

|E(k)| (3.15)
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3.2 Transport Vortices

In order to understand the relation between vortices and gapped fermionic ex-
citations, in this section we study how to transport vortices and move between
different vortex sectors. The vortex configurations {wp} is determined by gauge
field {uij} on links. Hence, we can change the link configuration {uij} in order
to manipulate votex configuration {wp}. This can be done simply by changing
signs of eigenvalues of link operators: uij → −uij . However, changing gauge
field directly is not physically doable. This difficulty can be addressed by not-
ing that the uij are always paired with local couplings Jij and Kijk. Therefore,
changing the gauge configurations uij is equivalent to tuning these couplings
{J,K}, hence allows us to move to different vortex sectors, as well as transport
vortices in a continous way.

As an example, we can tuning Jz = −1 on the d successive z−links that lie
on links crossed by a string, which is shown in Fig.(11). This is equivalent to
setting uij = −1 on these links. This operartion creates two vortices seperated
by distance d, since only two ends of the string create vortex excitations. Then
by varying the distance d we can probe the interation of two vortices by studying
the evolution of energy spectrum as a function of seperation d. Moreover, we can
define a ’continous’ transport of vortex by reversing the sign of Jij continuously,
i.e. Jij ≡ 1 − 2s/S with s ∈ [0, S]. Under such tuning protocal, the energy
spectrum can evolve smoothly between different vortex sectors.

Using manipulation defined above, we can evaluate the fermionic energy
spectrum of the Hamiltonian with zero and two vortices. See in Fig.(12).

Figure 11: tuning Jz = −1 on the d successive z−links that lie on links crossed
by a string, which is equivalent to setting uij = −1 on these links. This oper-
artion creates two vor tices seperated by distance d. Or in the continuous way,
by setting Jij(s) = 1− 2s/S with s ∈ [0, S]
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In the absence of vortices, the fermionic spectrum has an energy gap ∆ (the
zero-mode energy of a free fermion) above the ground state energy E0v

0 . The
gap remains as well when a pair of vortices seperated by d is introduced, whose
ground state energy is to be denoted by E2v

d , and excitation by E2v
d + εd. In

Fig.(12), the ground state energy of 2-vortex sector E2v
d and its first excited

states E2v
d + εd collapse into the same 2-vortex energy ∆2v at large seperation,

i.e. the ground state becomes two-fold degenerate.
For convenience, let us define the creation operator of i−th excitation (or

i − 1 fermionic mode) to be z†i , and the ground state of n-vortex sector to be
|Ψnv

0 〉. In the occupation basis, the states in 2-vortex sector can be written as:

|0〉 =
∣∣Ψ2v

0

〉
, |1〉 = z†1 |0〉 (3.16)

At large distance, |0〉 and |1〉 are two degenerate states with energy ∆2v above
vortex-free ground state, thereby making the two states energetically indistin-
guishable. Their wavefunctions differ by the occupation of of the gapless zero
mode. However, for small distance, the zero mode acquires an energy gap above
E2v
d , thus the 2-fold degeneracy will be lifted, and the two states become ener-

getically distinguishable. As d→ 0, the fusion of two vortices brings the ground
state wavefunction back to vortex-free sector, the zero-mode is then gapped by
the original gap ∆.

Figure 12: The gap behavior for a 2-vortex configuration as a function of the
vortex separation d. The spectrum is plotted against the ground state energy
of 0-vortex E0v

0 . The solid line is the total ground state energy in 2-vortex
sector, denoted by E2v

d . The dashed line is the energy of the first excited state
in 2-vortex sector, which is εd above the ground state. The dotted line ∆ is the
lowest free-fermion energy in all-vortex sector.
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3.3 Fusion Rule and Non-Abelian Statistics

In this section, I will brief sketch the fusion corresponds to bringing two anyons
together and determines how they behave collectively. The detailed derivation
is to be done out of this term paper project in the coming summer term. The
distinct behavior of |0〉 and |1〉 discussed in last section at small d is indicative
that the occupation of the fermionic zero mode corresponds to the fusion channel
of the vortices. Therefore we identify these states with Ising anyons:

Ground state ⇔ 1, vac.

Vortex excitation ⇔ σ, non-Abelian anyon

Fermionic excitation ⇔ ψ, fermion

(3.17)

The non-trivial fusion rules are given by:

ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ (3.18)

To see the non-Abelian statistics of vortices, consider 4 vortices created in
pairs. The behaviour of Ising anyons undergoing the described evolution is given

Figure 13: Two pairs of vortives are created in lattice. The paths in (a) is
topologically equivalent to a link shown in (b)

in Fig.(13). Such a braiding operation is predicted to produce a change by:

B = e−π/4i
[
0 1
1 0

]
(3.19)

Unlike in the toric code model where braiding operation produces U(1) phase
factor, in the non-abelian phase the effect of braiding is a matrix.
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