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I.

Consider a purely bosonic model, a chain of L harmonic oscillator with frequency ω0, coupled together by springs.
It has a gap in the phonon spectrum and is a non-critical integrable system. The Hamiltonian reads
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Peschel parameterized it by ω0 = 1− κ, so that if κ = 0 the Hamiltonian is digonal under boson occupation number,
and there is no dispersion (only one mode ω0) and the system is gapped. If κ→ 1 (thus ω0 → 0), there will only be
acoustic phonon excitations and the system become gapless.

A. 2 particle problem

As the simplest example let us scrutinize the 2-particle problem. Its Hamiltonian reads
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We don’t want off-diagonal terms like x1 − x2, so we do the following transformation:

v = (x1 + x2)/
√

2, u = (x1 − x2)/
√

2 ⇐⇒ x1 = (v + u)/
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I like the factor of
√

2 because of its reciprocal symmetry (also the transformation belongs to O(2) so that
∑

i x
2
i

remain the same form). Then the potential energy becomes
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which describes two de-coupled harmonic oscillators. Since [H,Hu] = [H,Hv] = [Hu, Hv] = 0, wavefunctions of two
harmonic modes can be measured simultanously, and their corresponding wavefunctions become separable. The ground
state of a 1D harmonic oscillator with angular frequency ω is

Ψ(x) =
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therefore, if define Ω2 ≡ (1/2)(ω2
0 + κ/2), the joint wavefunction of normal modes is

Ψ(u, v) = C exp
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where C is a normalization constant. Next we are going to calculate the reduced density matrix of the state by tracing
out one of the oscillators in the original coordiate. For example, let us trace out x1 for the density matrix of x2:

ρ2(x2, x
′
2) =

∫ ∞
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dx1Ψ∗(x1, x
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∝
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where
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and the normalized reduced density matrix is
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To calculate von-Neumann entanglement entropy we need to solve the following eigenvalue problem:∫ ∞
−∞

dx′ρ2(x, x′)fn(x′) = pnfn(x) (10)

whereby the EE can obtained by S = −
∑

n pn log pn. The solution can be guessed:

pn = (1− ξ)ξn (11)

fn(x) = Hn(α1/2x) exp
(
−αx2/2

)
(12)

where Hn is the Hermit polynomial, α = (γ2 − β2)1/2, ξ = β/(γ + α). Then EE can be calculated by

S = −
∑
n

(1− ξ)ξn log(1− ξ)ξn (13)

B. N particles

Using PBC, the Hamiltonian can be written as
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where M = I is diagonal and K is a real symmetric N ×N matrix with positive eigenvalues,
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. . . 0
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. . .
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
(16)
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with κ′i = ω2
0 + κ. By choosing a basis which diagonalizes the matrix K, the hamiltonian can be express as the sum of

uncoupled harmonic oscillators hamiltonian. That is

XTUT
(
UKUT

)
UX ≡ Y TKDY, with UTU = I (17)

where KD is a diagonal matrix whose elements are the square of angular frequencies ω2
i of i-th normal modes. The

resultant joint wavefunction takes the form
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where we defined the coupling matrix A ≡ UT
√
KDU whose elements are the energies (characteriztic frequencies e.g.

ωijxixj) of bonds between oscillators. The normalized wavefunction then reads
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4
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Now that we have the phsyical intuition, let us trim and clarify some notations in order to be consistent with Peschel.
We expand the exponential term, so that the wavefunction becomes

Ψ(x) = C exp

−1

2

∑
ij
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 (20)

the coupling matrix A can also be expanded by normal modes. Note that φq ∈ col(U), q = 1, . . . , N are the set of
normal basis, A can be written as

Aij =

N∑
q=1

ωqφq(i)φq(j) (21)

where ωq ∈
√
KD. Then the full density matrix is

ρ(x,x′) = Ψ(x)Ψ∗(x′) ∝ exp

−1
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′
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To get the reduced density matrix ρl of a single l-th oscillator we calculate the following:

ρl(xl, x
′
l) =

∫ (∏
i 6=l

dxi

)
Ψ(x1, . . . , xl, . . . , xN )Ψ∗(x1, . . . , x

′
l, . . . , xN ) (23)

where we set xi = x′i if i 6= l. With this restriction and noting that A is symmetric, the full density matrix becomes

ρ(x1, . . . xl, . . . , xN , x1, . . . x
′
l, . . . , xN ) = C exp

−∑
i,j 6=l

Aijxixj −
∑
j 6=l

Aljxj(xl + x′l)−All(x
2
l + x′2l )

 (24)
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