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1 Analytical Results

Due to Pauli exclusion, momentum ket of different fermions must be different.
So for n free fermions there has to be n different momentum states e**s” that
are mutually orthogonal. For simplicity, I denote them as |kj>r77 which means
j-th particle at position r; whose unique (w.r.t. other particles) momentum is
k;. Then the wavefunction of n free fermions is the Slater determinant:
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where A is the anti-symmetrizer which is equivalent to the Slater determinant.
To evaluate the determinant we expand it in terms of n-permutation group S,,:
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where sgn(o) is +1 for even permutations, and —1 for odd permutations. In
this representation the density matrix is

(1.3)

p=1¥,) (V| = Z sgn(o) sgn(o ® ‘ka'() (korin],

o,0'€S, 1,j=2

Now we’d like to find the reduced density matrix of the first m particles, that
is, we want to trace out momentum kets which are identified by r;, j > m + 1.
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where we ignored the constant sgn?(c) = 1. Details are attached in Appendix.

In the simplest case, where the system is assigned only with the first particle
i.e. m =1, all the rest (from i = 2 to n) are environment to be traced out. The
single fermion reduced density matrix becomes

P =" ko)) (ko] (1.5)

ceSy



upto a global normalization factor. It’s readily to see that the reduced density
matrix is diagonal in this basis. Also all diagonal elements are equally weighed,
since the number of configurations N 3 Vi = ¢ (1) are the same. After normal-
ization, all diagonal elements becomes 1/n. So the entanglement entropy for n
free fermions is:
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For m > 1, reduced density matrix reads
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oceS, \i=1 i'=1

This is still diagonal with equal elements 1/d. However the dimension of matrix
is dependent on both n and m. The dimension d of this d x d square matrix is

determined by
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Hence

d
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By Stirling’s approximation log(n!) ~ nlogn — n, this becomes
Sgn) ~nlogn —n —mlogm+m — [(n — m)log(n — m) — (n — m)]

=nlogn — mlogm — nlog(n —m) + mlog(n — m)

= m[log(n—m) —logm] +n{1ogn—log(n—m)]
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where we assumed n > m > 1. This result is consistent with former result on
m=1.

Here I make a very rougth estimation of EE scaling: suppose there is a
macroscopic amount of free fermions uniformly distributed in d-dimensional
space. Assuming particle density p = 1 i.e. 1 per unit volumn, and use the
length scale of universe as the measure, then n > m indicates the length scale
of system is £ — 0. So the EE of system is approximated by
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log(1/L) above is large for small system size, nonetheless it is bounded by

log<i) < % (1.12)

so we have

Sp(L) < £47! (1.13)

This result holds for uniformly distributed free fermions and n > m > 1
(universe >> system size).

2 Numerical Results

In this section I present the numerical results on the Slater determinant of 2-
7 free fermions. First Linear-Linear scale, then Exp-Linear scale. From the
Exp-Linear plot it’s readily to see that the results are in good agreement with
Eq.(1.6).
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Figure 1:  Number of fermions vs. Entanglement entropy (Linear-Linear).
Results obtained by tracing all but the 1st particle
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Figure 2: Number of fermions vs. Entanglement entropy (Exp-Linear). Results
obtained by tracing all but the 1st particle

3 Appendix

Here I present the detailed derivation. In order to evaluate:
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Let’s first look at the right-most braket:
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The left-most braket of Eq.(3.1) is
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so Eq.(3.1) becomes
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