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1 Introduction

We begin with the classical Ising Hamiltonian:

H = −J
∑
〈ij〉

SiSj − h
∑
i

Si (1)

where J > 0 is a ferromagnetic exchange interaction and h the external field.
The mean field theory assumes very small thermal fluctuation so that the system
can be treated as non-interacting spins. Let 〈Si〉 be the average of spin over
ensemble, hence the thermal fluctuation of site i is Si − 〈Si〉. Since fluctuation
is assumed to be small, we ignore the higher order:

(Si − 〈Si〉)(Sj − 〈Sj〉) = 0 (2)

therefore
SiSj = Si 〈Sj〉+ Sj 〈Si〉 − 〈Si〉 〈Sj〉 (3)

The Ising chain is translationally symmetric, so the expectation value of spins,
thus local magnetization mi ≡ 〈Si〉, should be independent of position:

〈Si〉 = mi = m (4)

We can then rewrite Eq.(3) as:

SiSj = m(Si + Sj)−m2 (5)

and the Ising Hamiltonian becoms:

Hmf = −J
∑
〈ij〉

(
m(Si + Sj)−m2

)
− h

∑
i

Si (6)

We can further simplify this by noting that
∑
〈ij〉 Si =

∑
〈ij〉 Sj , since Si, Sj

are single site variables, and that
∑
〈ij〉 = z

2

∑
i where z is the coordination

number. The mean field approximation therefore takes the form:

Hmf = −Jzm
2

∑
i

(2Si −m)− h
∑
i

Si

= −(h+ Jzm)
∑
i

Si +
NJzm2

2

(7)
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Now we can calculate the partition function Z:

Z = Tr
{
e−βHmf

}
=

∑
S1=±1

. . .
∑

SN=±1
e−βHmf

= e−βNJzm
2/2

∑
S1=±1

. . .
∑

SN=±1

N∏
j

eβ(h+Jzm)Sj

= e−βNJzm
2/2

N∏
j

( ∑
Si=±1

eβ(h+Jzm)Si

)
= e−βNJzm

2/2
(

2 cosh[β(h+ Jzm)]
)N

(8)

Finally, we can calculate the magnetization by evaluating 〈Si〉. Note that the
thermal average 〈Si〉 is homogeneous in the system, hence m = 〈Si〉.

m =
Tr
{
Sie
−βHmf

}
Z

=
1

Z

∑
j

Sie
−βHmf

=
e−βNJzm

2/2

Z

∑
j

( ∑
S1=±1

. . .
∑

SN=±1
Si

N∏
l

e−β(Jzm+h)Sl

)
=
e−βNJzm

2/2

Z

(∏
j 6=i

eβ(Jzm+h)Sj

)( ∑
Si=±1

Sie
β(Jzm+h)Si

)
=
e−βNJzm

2/2

Z

(
2 cosh[β(h+ Jzm)]

)N−1(
2 sinh[β(h+ Jzm)]

)
= tanh[β(h+ Jzm)]

(9)

A better way to get m is by taking derivative of logZ with respect to an
effective field h′ ≡ Jzm+ h (Derivation in A1):

m =
1

N

∂ logZ

∂h′
(10)

where

logZ = log{e−βNJzm
2/2
(

2 cosh[βh′]
)N
}

=
−βNJzm2

2
+N log 2 +N log{cosh[βh′]}

(11)

Plug into Eq.(10), it’s straightforward to get:

m = tanh(βh′) = tanh[β(Jzm+ h)] (12)

2 Zero field limit

In the zero field limit, we can calculate analytically the magnetization temper-
ature scaling. Setting h = 0 gives
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m(T, 0) = tanh(βJzm) (13)

This can be solved graphically. We can see that the phase transition occurs
when βJz = 1 as is showed in Fig.(1,2).
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Figure 1: Graphical illustration of phase transition.

Therefore the critical temperature is TC = Jz/kB , and we can rewrite Eq.(13):

m(T, 0) = tanh

[
TC
T
m

]
(14)

At T = TC , m = 0. Expanding around m = 0 and T ∼ TC gives

m ∼=
TC
T
m− 1

3

(
TC
T

)3

m3 (15)

As expected one solution is m = 0. The other solution requires some algebra.
Factoring m and TC

T gives

T

TC
= 1− 1

3

(
TC
T

)2

m2 (16)

Solving for m yields
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Figure 2: Collected graphical illustration of phase transition as a function of T
at zero-field.

m(T, 0) = ±

[
3

(
T

TC

)2(
1− T

TC

)]1/2
(17)

Defining a dimensionless temperature t ≡ TC−T
TC

gives

m(T, 0) = ±
[
3t(1 + t)2

]1/2 (18)

As T → T−, t� 1. Therefore

m(T, 0) = ±[3t]1/2 (19)

and we can conclude that near the critical temperature there is an exponential
behavior m ∼ tβ

m(T, 0) ∼
(
Tc − T
Tc

)1/2

(20)

thus β = 1/2 for t→ 0−. At T > Tc there’s no magnetization, therefore β = 0
for t→ 0+.
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3 Graphical solution of m(h)

Plotting the intersections of the right and left hand sides of Eq.(12) allows us
to show m as a function of the field h. This can be seen in Fig. 3.
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Figure 3: Magnetization as a function of field at Jz/T = 1.

4 Free energy

At h = 0, the free energy is:

Fmf (m, 0) = −kBT logZ (21)

where the partition function Z is defined in Eq.(8). We can expand the log[coshx]
term which appears in Eq.(21) by:

log(coshx) ' x2

2
− x4

12
+O(x5) (22)

Then it is readily apparent that the free energy can be approximated by:

Fmf (m, 0) ' −NkBT log 2− N(Jzm)2

2kBT
+
NJzm2

2
+
N(Jzm)4

12(kBT )3

= −NkBT log 2 +
NkBTc

2T
(T − Tc)m2 +

NkBT
4
c

12T 3
m4

(23)
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where we used Jz = kBTc in the second line. Note that Eq.(23) has identical
form as the Laudau-Ginzburg theory, which is:

Fmf (m, 0) = F0(T ) + a(T )(T − Tc)m2 + b(T )m4 + . . . (24)

which has Z2 symmetry, consistent with the Hamiltonian. Now we plot the free
energy per site defined by f ≡ Fmf (m,h)/N according to our approximation in
Eq.(23):

Figure 4: Free energy at different temperature as a function of magnetization
m without field. Calculated by approximation in Eq.(23)

As temperature drops below Tc, the profile of f(m) deforms to the ”Mexican
hat”, thus two stable ferromagnetc states emerge. It is worth pointing out that
in Fig.(4) the overall shift between different lines are due to the first F0(T ) term
which has a temperature dependence.

We can as well remove the F0(T ) term and focus on the the geometric profile
of f(m), as showed in Fig.(5). At a lower T , the stable state moves towards
maximal magnetization m = ±1 as expected. Note that the tendency to be
polarized at low temperature can only be captured by the exact expression
of free energy in Eq.(21), the approximated version in Eq.(23) will give the
opposite. It turns out that the higher order does matter a lot in finding the
stable state m in free energy profile.
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Figure 5: Free energy at different temperature as a function of magnetization
m without field. Calculated by exact expression in Eq.(21). The stable state
moves towards maximal magnetization m = ±1 as expected

Now lets calculate the free energy under non-zero field h. It is similarly as
Eq.(21). All we have to do is substitute Jzm by Jzm+ h:

Fmf (m,h) ' −NkBT log 2− N(kBTcm+ h)2

2kBT
+
NkBTcm

2

2
+
N(kBTcm+ h)4

12(kBT )3

It’s readily apparent that there must be magnetization m with odd exponent.
Therefore the free energy is no longer symmetric about m = 0. As showed in
Figure.(6):
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Figure 6: Free energy at h 6= 0 as a function of magnetization m. Calculated
by approximated result

5 Appendix

Derivation of Eq.(10):
Consider a Hamiltonian with individual spins coupled to a homogeneous field

h:
H = H0 − h

∑
i

Si (25)

whose partition function is:

Z = Tr
{
e−βH

}
= Tr

{
e−βH0+βh

∑
i Si

}
(26)

it is straightforward to see that:

1

Z

∂Z

∂h
=

1

Z
Tr

{
(β
∑
i

Si) e
−βH

}
= βNm (27)

where we used the definition ∑
i

Si = Nm (28)

N being the number of spins, m the magnetization per site. Therefore

m =
1

Nβ

1

Z

∂Z

∂h
=

1

Nβ

∂ logZ

∂h
(29)
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or written in terms of free energy:

m = − 1

N

∂F

∂h
(30)
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